Profitez au maximum de vos questions avec les ressources d'Zoofast.fr. Découvrez des réponses approfondies de professionnels expérimentés couvrant un large éventail de sujets pour satisfaire tous vos besoins d'information.

Merci de résoudre l'exercice suivant: f est la fonction définie sur l’intervalle [-2 ; 0],par : f ( x ) = ( x2 + 2x + 1 ) e 3x+4 . a) Montrer que pour tout réel x de [ -2 ; 0], f’(x) = ( 3x2 +8x + 5) e 3x+4 . b) Etudier le signe de f’ (x).

Sagot :

Réponse :

Explications étape par étape

View image olivierronat

Réponse :

f(x) = (x² + 2 x + 1)e³ˣ⁺⁴

a) montrer que pour tout x de [- 2 ; 0]

   f '(x) = (3 x² + 8 x + 5)e³ˣ⁺⁴

f(x) = (x² + 2 x + 1)e³ˣ⁺⁴  ⇔ f(x) = u*v  ⇒ f '(x) = u'v + v'u

u = x² + 2 x + 1 ⇒ u' = 2 x + 2

v = e³ˣ⁺⁴ ⇒ v' = 3e³ˣ⁺⁴

f '(x) = (2 x + 2)e³ˣ⁺⁴ + 3(x² + 2 x + 1)e³ˣ⁺⁴

       = (2 x + 2 + 3(x² + 2 x + 1)e³ˣ⁺⁴

       = (2 x + 2 + 3 x² + 6 x + 3)e³ˣ⁺⁴

       = (3 x² + 8 x + 5)e³ˣ⁺⁴

b) étudier le signe de f '(x)

f '(x) = (3 x² + 8 x + 5)e³ˣ⁺⁴  or  e³ˣ⁺⁴ > 0  donc le signe de f '(x) dépend du signe de 3 x² + 8 x + 5

f '(x) = 0  ⇔ 3 x² + 8 x + 5 = 0

Δ = 64 - 60 = 4  donc √4 = 2

x1 = - 8 + 2)/6 = - 6/6 = - 1

x2 = - 8 - 2)/6 = - 10/6 = - 5/3

   x      - 2                - 5/3               - 1                  0

f '(x)                 +          0         -        0         +

donc  f '(x) ≥ 0  sur [- 2 ; - 5/3]U[- 1 ; 0]

         f '(x) ≤ 0  sur [- 5/3 ; - 1]

Explications étape par étape

Merci d'utiliser cette plateforme pour partager et apprendre. N'hésitez pas à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Merci de visiter Zoofast.fr. Revenez bientôt pour découvrir encore plus de réponses à toutes vos questions.