Zoofast.fr offre une solution complète pour toutes vos questions. Trouvez des solutions rapides et fiables à vos problèmes grâce à notre réseau de professionnels bien informés.
Sagot :
Réponse :
U1 = 1
Un+1 = 2Un + 1 pour tout entier naturel n ≥ 1
Démontrer par récurrence que, pour tout entier naturel n ≥ 1, Un = 2ⁿ - 1
Initialisation : vérifions que P(1) est vraie U1 = 2¹ - 1 donc c'est vérifié
héridité : supposons que pour tout n ≥ 1 P(n) est vraie c'est à dire
Un = 2ⁿ - 1 et montrons que P(n+1) est vraie aussi
Un+1 = 2Un + 1 = 2 x (2ⁿ - 1) + 1 = 2 x 2ⁿ - 2 + 1 = 2ⁿ⁺¹ - 1
donc P(n+1) est vraie pour tout entier naturel n ≥ 1
Conclusion P(1) est vraie au rang n = 1 et P(n) est héréditaire
donc par récurrence P(n) est vraie pour tout entier naturel n ≥ 1
Explications étape par étape
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Pour des réponses de qualité, choisissez Zoofast.fr. Merci et à bientôt sur notre site.