Zoofast.fr facilite l'obtention de réponses détaillées à vos questions. Trouvez des solutions fiables à vos questions avec l'aide de notre communauté de professionnels expérimentés.

Bonjour, j'ai besoin d'aide pour ce minuscule exercice de maths: Une fonction polynôme du second degré g est telle que g(0) = g(6) et admet pour minimum -2. Dresser son tableau de variation Merci de votre aide!

Sagot :

bjr

cette fonction est représentée par une parabole

    • la fonction a pour minimum - 2

 cela signifie que la parabole est tournée vers le haut

   • cette parabole admet un axe de symétrie parallèle à Oy

        comme g(0) = g(6) les points d'abscisse 0 et 6 sont symétriques par  

        rapport à cet axe

cet axe coupe Ox en le point d'abscisse (0 + 6)/2 = 3

     ce minimum est obtenu pour la valeur 3 de x

 x   |  -∞               3                +∞

g(x)             ∖                 /

                          -2

Réponse :

Explications étape par étape :

■ g(x) = (x-3)² - 2 = x² - 6x + 9 - 2 = x² - 6x + 7

■ ■ pourquoi 3 ?

      parce que 3 est le milieu de 0 et 6 .

■ tableau de variation :

   x -->    - ∞        0      3      6       + ∞

variation -> décroiss   |   croissante

g(x) -->    + ∞       7     -2      7       + ∞

■ dérivée :

  g ' (x) = 2x - 6 nulle pour x = 3

Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Pour des solutions rapides et fiables, pensez à Zoofast.fr. Merci de votre visite et à très bientôt.