Découvrez une mine d'informations et obtenez des réponses sur Zoofast.fr. Posez n'importe quelle question et recevez des réponses rapides et bien informées de la part de notre communauté d'experts expérimentés.
Sagot :
Bonsoir,
1) On va calculer le polynôme caractéristique de A :
[tex]\chi_A=\det(XI_3-A)=\left(\begin{array}{ccc} X-1&1&0\\-1&X&1\\1&0&X-2\end{array} \right)=-\left(\begin{array}{ccc} -(X-1)&X-1&X-1\\-1&X&1\\1&0&X-2\end{array} \right)[/tex]
en faisant [tex]L_1 \leftarrow -L_1+L_2+L_3[/tex], puis :
[tex]\chi_A=-(X-1)\left(\begin{array}{ccc} -1&1&1\\-1&X&1\\1&0&X-2\end{array} \right)=-(X-1)\left(\begin{array}{ccc} 0&1&1\\0&X&1\\X-1&0&X-2\end{array} \right)[/tex]
en faisant [tex]C_1 \leftarrow C_1+C_3[/tex], d'où avec un développement par rapport à la 1re colonne :
[tex]\chi_A=-(X-1)^2\left(\begin{array}{ccc} 0&1&1\\0&X&1\\1&0&X-2\end{array} \right)=-(X-1)^2\left((-1)^{3+1}\times \left| \begin{array}{cc} 1&1\\X&1\end{array} \right|\right)[/tex]
soit enfin : [tex]\chi_A=-(X-1)^2(1-X)=\boxed{(X-1)^3=\chi_A}[/tex].
1 est donc la seule valeur propre de A, et on va chercher la dimension de l'espace propre associé, [tex]E_1[/tex].
On résout donc [tex]AX=X[/tex], d'inconnue [tex]X= \left(\begin{array}{c} x\\y\\z\end{array} \right)\right)[/tex].
On trouve :
[tex]AX=X \iff \left\{\begin{array}{c} x-y=x\\x-z=y\\-x+2z=z\end{array} \right. \iff \left\{\begin{array}{c} y=0\\x=z\end{array} \right.[/tex]
donc [tex]E_1[/tex] est de dimension 1 ([tex]\not =3[/tex]) donc A n'est pas diagonalisable.
Elle est cependant trigonalisable car son polynôme caractéristique est scindé.
Elle est donc semblable à [tex]\left( \begin{array}{ccc}1&*&*\\0&1&*\\0&0&1 \end{array}\right)[/tex], et on cherche une base de trigonalisation.
On peut prendre comme premier vecteur de base [tex]e_1=(1,0,1)[/tex] (c'est un vecteur propre de A).
Pour le deuxième, en résolvant [tex]\left\{ \begin{array}{c} x-y=1+x\\x-z=y\\2z-x=1+z \end{array}\right. \iff \left\{ \begin{array}{c} y=-1\\x=z-1 \end{array}\right.[/tex] (on résout [tex]Ae_2=e_1+e_2[/tex]) on obtient par exemple [tex]e_2=(-1,-1,0)[/tex].
Et enfin : [tex]\left \{ \begin{array}{c} x-y=x-1\\x-z=y-1\\2z-x=z\end{arrray}\right. \iff \left \{ \begin{array}{c} y=1\\x=z\end{arrray}\right.[/tex] (on résout [tex]Ae_3=e_2+e_3[/tex]) donc on peut choisir [tex]e_3=(1,1,1)[/tex].
Finalement :
[tex]\boxed{A=P\left(\begin{array}{ccc} 1&1&0\\0&1&1\\0&0&1 \end{array} \right)P^{-1}}[/tex] où [tex]\boxed{P=\left(\begin{array}{ccc} 1&-1&1\\0&-1&1\\1&0&1 \end{array} \right)}[/tex].
2) On vérifie sans problème que [tex](A-I_3)^3=0_3[/tex].
Cela s'explique par le fait que [tex]A=PTP^{-1}[/tex] où T est la matrice triangulaire précédente,
avec donc [tex]T=I_3+\left(\begin{array}{ccc} 0&1&0\\0&0&1\\0&0&0 \end{array} \right)[/tex] soit :
[tex]A-I_3=P\left(\begin{array}{ccc} 0&1&0\\0&0&1\\0&0&0 \end{array} \right)P^{-1}[/tex] donc [tex](A-I_3)^3=P\left(\begin{array}{ccc} 0&1&0\\0&0&1\\0&0&0 \end{array} \right)^3P^{-1}[/tex] mais [tex]\left(\begin{array}{ccc} 0&1&0\\0&0&1\\0&0&0 \end{array} \right)^3=0[/tex] donc [tex]\boxed{(A-I_3)^3=0_3}[/tex].
3) On utilise la trigonalisation précédente : [tex]\forall n \in\mathbb{N}^*, A^n=PT^nP^{-1}=P\left[I_3+\left(\begin{array}{ccc} 0&1&0\\0&0&1\\0&0&0 \end{array} \right) \right]^nP^{-1}[/tex]
et on calcule la puissance de droite avec le binôme de Newton (les deux matrices commutent bien !), ce qui est facile car la matrice de droite est nilpotente :
[tex]\left[I_3+\left(\begin{array}{ccc} 0&1&0\\0&0&1\\0&0&0 \end{array} \right) \right]^n=I_3+n\left(\begin{array}{ccc} 0&1&0\\0&0&1\\0&0&0 \end{array} \right)+\binom{n}{2}\left(\begin{array}{ccc} 0&0&1\\0&0&0\\0&0&0 \end{array} \right)=\left(\begin{array}{ccc} 1&n&\frac{n(n-1)}{2}\\0&1&n\\0&0&1 \end{array} \right)[/tex]
donc finalement :
[tex]\boxed{\forall n \in \mathbb{N}^*, A^n=P\left(\begin{array}{ccc} 1&n&\frac{n(n-1)}{2}\\0&1&n\\0&0&1 \end{array} \right)P^{-1}}[/tex].
Nous sommes ravis de vous compter parmi nos membres. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons créer une ressource de connaissances précieuse. Merci de choisir Zoofast.fr. Revenez bientôt pour découvrir encore plus de solutions à toutes vos questions.