Obtenez des conseils avisés et des réponses précises sur Zoofast.fr. Trouvez les réponses dont vous avez besoin rapidement et précisément avec l'aide de nos membres de la communauté bien informés et dévoués.
Sagot :
Bonjours,
1. On note (Ln)n∈N la suite décrivant la longueur d'un coté à l'itération n. On remarque qu'à chaque itération la longueur est divisé par 3 soit : ∀n∈N, Ln+1 = Ln/3
(Ln)n∈N est une suite géométrique de premier terme 1 et de raison 1/3, on a:
∀n∈N, Ln+1 = [tex](1/3)^{n}[/tex]
2. On note (Cn)n∈N la suite décrivant le nombre de coté coté à l'itération n. On remarque qu'à chaque itération le nombre de coté est multiplié par 4 soit : ∀n∈N, Cn+1 = Cn*4
(Cn)n∈N est une suite géométrique de premier terme 3 et de raison 4, on a:
∀n∈N, Cn+1 =3* [tex](4)^{n}[/tex]
3. On note (Pn)n∈N la suite décrivant le périmétre de la figure à l'itération n. On a : ∀n∈N, Pn = Cn * Ln = 3 *[tex](4/3)^{n}[/tex]. Si tu calcules tu vas remarquer que le périmétre continue de grandir. On a : 4/3 > 1 donc (Pn)n∈N tend vers +∞ quand n tend vers +∞.
Merci de contribuer à notre discussion. N'oubliez pas de revenir pour découvrir de nouvelles réponses. Continuez à poser des questions, à répondre et à partager des informations utiles. Chaque question trouve sa réponse sur Zoofast.fr. Merci et à très bientôt pour d'autres solutions.