Bienvenue sur Zoofast.fr, votre plateforme de référence pour toutes vos questions! Notre plateforme offre des réponses fiables et complètes pour vous aider à prendre des décisions éclairées rapidement et facilement.
Sagot :
Bonjour,
Comme d'habitude, on commence par calculer le polynôme caractéristique de A :
[tex]\chi_A=\det(XI_3-A)=\left(\begin{array}{ccc}X-9&-1&2\\0&X-2&0\\0&-1&X-2 \end{array} \right)=(X-9)\left(\begin{array}{ccc}1&-1&2\\0&X-2&0\\0&-1&X-2 \end{array} \right)[/tex]
puis on développe par rapport à la première colonne :
[tex]\chi_A=(X-9)\times(-1)^{1+1}\times1\times \left|\begin{array}{cc} X-2&0\\-1&X-2 \end{array}\right|=\boxed{(X-9)(X-2)^2=\chi_A}[/tex].
On a deux valeurs propres : 9 et 2. On sait que [tex]E_9[/tex] est de dimension 1, et que [tex]E_2[/tex] est de dimension 1 ou 2 (s'il est de dimension 2, A est diagonalisable, et sinon, elle est seulement trigonalisable).
On cherche donc la dimension de [tex]E_2[/tex] en résolvant [tex]AX=2X[/tex] d'inconnue [tex]X=\left(\begin{array}{c}x\\y\\z \end{array} \right)[/tex].
[tex]AX=2X\iff \left\{\begin{array}{c} 9x+y-2z=2x\\2y=2y\\y+2z=2z\end{array} \right. \iff \left\{\begin{array}{c} 7x=2\lambda\\y=0\\z=\lambda \in \mathbb{R}\end{array} \right.[/tex]
Donc [tex]E_2[/tex] est de dimension 1, et A n'est pas diagonalisable.
Elle est cependant trigonalisable, semblable à[tex]\left( \begin{array}{ccc} 9&*&*\\0&2&*\\0&0&2\end{array} \right)[/tex]. Mais en fait, on a mieux, puisque on sait qu'elle est même semblable à [tex]\left( \begin{array}{ccc} 9&0&0\\0&2&*\\0&0&2\end{array} \right)[/tex] (c'est une conséquence du lemme des noyaux; je pourrai te l'expliquer en commentaires si tu veux)
On cherche donc les vecteurs de base. Pour les deux premiers, c'est facile, ce sont des vecteurs propres de [tex]E_9[/tex] et [tex]E_2[/tex] respectivement.
Pour obtenir un vecteur propre de [tex]E_9[/tex], on résout :
[tex]AX=9X \iff \left \{ \begin{array}{l} 9x+y-2z=9x\\2y=9y\\y+2z=9z\end{array} \right. \iff \left \{ \begin{array}{l} x=\mu \in \mathbb{R}\\y=0\\z=0\end{array} \right.[/tex].
On choisit donc [tex]e_1=(1,0,0)[/tex].
On a déjà trouvé un vecteur propre de [tex]E_2[/tex] (on a résolu le système associé pour en trouver la dimension) : on prend [tex]e_2=(2,0,7)[/tex] (on pourrait prendre [tex]e_2=(\frac{2}{7}\lambda,0,\lambda)[/tex] pour tout réel [tex]\lambda[/tex]).
Pour le dernier, il faut résoudre [tex]Ae_3=2e_3+\mu e_2[/tex], avec [tex]\mu[/tex] fixé. On essaie ici [tex]\mu=1[/tex].
On résout donc :
[tex]\left \{ \begin{array}{l} 9x+y-2z=2x+2\\2y=2y\\y+2z=2z+7\end{array} \right.\iff \left \{ \begin{array}{l} 7x=2z-5\\y=7\end{array} \right. \iff \left \{ \begin{array}{l} x=\frac{1}{7}(2\lambda-5)\\y=7\\z=\lambda \in \mathbb{R}\end{array} \right.[/tex].
Je choisis [tex]\lambda=6[/tex] (pour enlever les fractions), et on a donc [tex]e_3=(1,7,6)[/tex].
Finalement :
[tex]\boxed{A=P\left(\begin{array}{ccc} 9&0&0\\0&2&1\\0&0&2 \end{array} \right)P^{-1}}[/tex] , avec [tex]\boxed{P=\left(\begin{array}{ccc} 1&2&1\\0&0&7\\0&7&6 \end{array} \right)}[/tex].
Merci de votre participation active. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Faites de Zoofast.fr votre ressource principale pour des réponses fiables. Nous vous attendons pour plus de solutions.