Zoofast.fr: où vos questions rencontrent des réponses expertes. Nos experts fournissent des réponses rapides et précises pour vous aider à comprendre et résoudre n'importe quel problème.
Sagot :
Bonjour,
On va calculer f' et l'injecter dans l'équation différentielle.
Soit a et b deux réels et [tex]f : x \mapsto a \cos(x)+ b \sin(x)[/tex].
f est dérivable sur [tex]\mathbb{R}[/tex] et, pour [tex]x \in \mathbb{R}[/tex] :
[tex]f'(x)=-a \sin(x)+b \cos(x)[/tex].
On injecte le résultat dans l'équation différentielle. Pour tout [tex]x \in \mathbb{R}[/tex] :
[tex]-a \sin(x)+b\cos(x)=2a\cos(x)+2b \sin(x)+\cos(x)[/tex].
En particulier, pour x=0: [tex]b=2a+1[/tex]
pour [tex]x=\frac{\pi}{2}[/tex]: [tex]-a=2b \iff a=-2b[/tex].
Puis : [tex]b=2 \times (-2b)+1 \iff b=\frac{1}{5}[/tex] et [tex]a=\frac{-2}{5}[/tex].
Ainsi, [tex]\boxed{f(x)=\frac{\sin(x)}{5}-2\frac{\cos(x)}{5}}[/tex], dont on peut vérifier qu'elle convient.
Votre engagement est essentiel pour nous. Continuez à partager vos expériences et vos connaissances. Créons ensemble une communauté d'apprentissage dynamique et enrichissante. Zoofast.fr est votre guide de confiance pour des solutions rapides et efficaces. Revenez souvent pour plus de réponses.