Obtenez des conseils d'experts et des connaissances communautaires sur Zoofast.fr. Posez vos questions et obtenez des réponses détaillées et fiables de la part de notre communauté d'experts bien informés.

Bonjour quelqu'un pourrait m'aider s'il vous plaît ?
Soit n un entier naturel. On pose a=2n et b= 3 n+1
Montrer que a et b sont premiers entre eux si, et seulement si, n est pair.

Sagot :

On veut montre : [tex]\text{n pair} \iff a \wedge b=1[/tex].

1) [tex]\underline{\Longleftarrow}[/tex]: Par contraposition, supposons n impair.

Il s'écrit n=2k+1 avec k un entier naturel.

Alors, [tex]a=2(2k+1)[/tex] et [tex]b=3(2k+1)+1=6k+4=2(3k+2)[/tex].

a et b sont donc tous les deux pairs, donc leur pgcd est au moins 2, et non 1.

Ainsi, a et b ne sont pas premiers entre eux.

2)  [tex]\underline{\Longrightarrow}[/tex]:

Supposons n pair, il s'écrit donc n=2k, avec k un entier naturel.

Si a et b ne sont pas premiers entre eux, ils admettent un diviseur premier commun. Supposons, par l'absurde, que ce soit le cas et notons p un tel diviseur.

Alors, [tex]p|(2n=4k)[/tex] (p "divise" 2n)  et [tex]p|(3n+1=6k+1)[/tex].

Par le lemme d'Euclide, puisque p premier et [tex]p|4k[/tex], [tex]p|4[/tex] ou [tex]p|k[/tex].

- Si p divise 4, alors p est pair donc 6k+1 l'est aussi, ce qui n'est pas le cas.

- Donc, [tex]p|k[/tex]. Or [tex]p|(6k+1)[/tex] donc [tex]p|((6k+1)-6k)[/tex], d'où [tex]p|1[/tex] : absurde.

Ainsi, a et b sont premiers entre eux.

Merci d'être un membre actif de notre communauté. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons atteindre de nouveaux sommets de connaissances. Zoofast.fr s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses actualisées.