Obtenez des conseils d'experts et des connaissances communautaires sur Zoofast.fr. Posez vos questions et obtenez des réponses détaillées et fiables de la part de notre communauté d'experts bien informés.
Sagot :
On veut montre : [tex]\text{n pair} \iff a \wedge b=1[/tex].
1) [tex]\underline{\Longleftarrow}[/tex]: Par contraposition, supposons n impair.
Il s'écrit n=2k+1 avec k un entier naturel.
Alors, [tex]a=2(2k+1)[/tex] et [tex]b=3(2k+1)+1=6k+4=2(3k+2)[/tex].
a et b sont donc tous les deux pairs, donc leur pgcd est au moins 2, et non 1.
Ainsi, a et b ne sont pas premiers entre eux.
2) [tex]\underline{\Longrightarrow}[/tex]:
Supposons n pair, il s'écrit donc n=2k, avec k un entier naturel.
Si a et b ne sont pas premiers entre eux, ils admettent un diviseur premier commun. Supposons, par l'absurde, que ce soit le cas et notons p un tel diviseur.
Alors, [tex]p|(2n=4k)[/tex] (p "divise" 2n) et [tex]p|(3n+1=6k+1)[/tex].
Par le lemme d'Euclide, puisque p premier et [tex]p|4k[/tex], [tex]p|4[/tex] ou [tex]p|k[/tex].
- Si p divise 4, alors p est pair donc 6k+1 l'est aussi, ce qui n'est pas le cas.
- Donc, [tex]p|k[/tex]. Or [tex]p|(6k+1)[/tex] donc [tex]p|((6k+1)-6k)[/tex], d'où [tex]p|1[/tex] : absurde.
Ainsi, a et b sont premiers entre eux.
Merci d'être un membre actif de notre communauté. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons atteindre de nouveaux sommets de connaissances. Zoofast.fr s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses actualisées.