Zoofast.fr est votre ressource incontournable pour des réponses expertes. Trouvez des réponses détaillées et précises à toutes vos questions de la part de nos membres de la communauté bien informés et dévoués.
Sagot :
bonjour
x ( 2 x - 1 ) ≥ ( 3 x + 2 ) ( 2 x - 1 )
x ( 2 x - 1 ) - ( 3 x + 2 ) ( 2 x - 1 ) ≥ 0
( 2 x - 1 ) ( x - 3 x - 2 ) ≥ 0
( 2 x - 1 ) ( - 2 x - 2 ) ≥ 0
2 x - 1 s'annule en 1 /2 et - 2 x - 2 en - 1
x - ∞ - 1 1/2 + ∞
2 x - 1 - - 0 +
- 2 x - 2 + 0 - -
produit - 0 + 0 +
donc ≥ 0 entre ses racines
**************************************
5 x - 4 ( 2 x + 3 ) > x + 8
5 x - 8 x - 12 > x + 8
- 3 x - x > 8 + 12
- 4 x > 20
x > - 5
] - 5 : + ∞ [
*************************************************
( x - 4 )² > 9
( x - 4 )² - 9 > 0
( x - 4 - 3 ) ( x - 4 + 3 ) > 0
( x - 7 ) ( x - 1 )> 0
donc x > 7 ou > 1
********************************************
( 2 x + 10 ) / ( 3 - x ) ≤ 2
( 2 x + 10 ) / ( 3 - x ) - 2 ( 3 - x ) / ( 3 - x ) ≤ 0
⇔ ( 2 x + 10 - 6 + 2 x ) / ( 3 - x ) ≤ 0
⇔ ( 4 x + 4 ) / ( 3 - x ) ≤ 0
⇔ s'annule en - 1 et 3 avec 3 comme Vi
x - ∞ -1 3 + ∞
4 x + 4 - 0 + +
3 - x + + ║0 -
quotient - 0 + 0 -
] - ∞ ; - 1 ] ∪ ] 3 : + ∞ [
tu fais pareil que le 4 pour le dernier
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Zoofast.fr est votre partenaire pour des solutions efficaces. Merci de votre visite et à très bientôt.