Zoofast.fr facilite l'obtention de réponses détaillées à vos questions. Nos experts fournissent des réponses précises et détaillées pour vous aider à naviguer sur n'importe quel sujet ou problème avec confiance.

Bonjour quelqu’un peut m’aider pour cet exercice sur la trigonomérie ( niveau 1ère) svp ??
Merci d’avance

Bonjour Quelquun Peut Maider Pour Cet Exercice Sur La Trigonomérie Niveau 1ère Svp Merci Davance class=

Sagot :

Svant

Réponse:

On utilise cos²x + sin²x = 1

[tex] {cos}^{2} ( \frac{7\pi}{12} ) = 1 - {sin}^{2} ( \frac{7\pi}{12} ) [/tex]

[tex]{cos}^{2} ( \frac{7\pi}{12} ) = 1 - \frac{ {( \sqrt{2} + \sqrt{6}) }^{2} }{ {4}^{2} } [/tex]

[tex]{cos}^{2} ( \frac{7\pi}{12} ) = 1 - \frac{ {(2 + 2 \times \sqrt{2} \times \sqrt{6} + 6) }}{ 16 } [/tex]

[tex]{cos}^{2} ( \frac{7\pi}{12} ) = \frac{ {(16 - 8 - 2 \times \sqrt{2} \times \sqrt{6}) }}{16 } [/tex]

[tex]{cos}^{2} ( \frac{7\pi}{12} ) = \frac{ {(8 - 2 \times \sqrt{2} \times \sqrt{6}) }}{16 } [/tex]

[tex]{cos}^{2} ( \frac{7\pi}{12} ) = \frac{ {(2 + 6 - 2 \times \sqrt{2} \times \sqrt{6}) }}{16 } [/tex]

[tex]{cos}^{2} ( \frac{7\pi}{12} ) = \frac{ {( \sqrt{2} - \sqrt{6}) }^{2} }{ {4}^{2} } [/tex]

2.

[tex] \frac{7\pi}{12} \geqslant \frac{\pi}{2} [/tex]

donc son cosinus est negatif.

[tex]{cos}( \frac{7\pi}{12} ) = - \sqrt{ \frac{ {( \sqrt{2} - \sqrt{6}) ^{2} }}{ 4^{2}} }[/tex]

[tex]{cos}( \frac{7\pi}{12} ) = - \frac{ {( \sqrt{2} - \sqrt{6}) }}{ 4} [/tex]

[tex]{cos}( \frac{7\pi}{12} ) = \frac{ {\sqrt{6} - \sqrt{2}}}{ 4} [/tex]

Nous sommes ravis de vous compter parmi nos membres. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons créer une ressource de connaissances précieuse. Zoofast.fr s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses mises à jour.