Zoofast.fr offre une plateforme conviviale pour trouver et partager des connaissances. Posez vos questions et obtenez des réponses rapides et bien informées de la part de notre réseau de professionnels expérimentés.
Sagot :
Réponse :
Explications étape par étape
1)
Mesure de EI=1-x
Mesure de EM=x²
Donc aire EMFI=produit de ces 2 côtés qui sont exprimés en fonction de x.
2)
A(x)=(1-x)x²
A(x)=x²-x³
3)
A(x) est définie sur [0;1]
Voir graph joint.
A(x) croît sur [0;0.67] environ puis décroît ensuite sur [0.67;1]
En 2nde , je ne vois pas comment tu peux avoir une idée de la valeur exacte de "x" pour laquelle A(x) est max.
Sauf à dire :
hum...hum...0.67 est vraiment tout proche de 2/3.
Donc :
On conjecture que A(x) est max pour x=2/3.
5)
A(2/3)=(2/3)²-(2/3)³=4/9-8/27=12/27-8/27=4/27
La valeur exacte de l'aire max est 4/27 .
6)
a)
On écrit la fct A(x)=x²-x³
On calcule la valeur de A(2/3) qui vaut donc 4/27.
On calcule :
A(2/3)-A(x) et non : A(2/3)-A(x).x comme il est écrit.
A(2/3)-A(x)=4/27-(x²-x³)=x³-x²+4/27
Et si tu t'amuses à développer comme j'ai fait :
(1/27)(3x-2)²(3x+1)
Tu retrouves bien : x³-x²+4/27
Donc la factorisation permet de dire : les 3 facteurs sont positifs sur [0;1] ou nul pour 3x-2=0 donc pour x=2/3.
Donc :
A(2/3)-A(x) ≥ 0 et vaut zéro pour x=2/3.
Donc :
A(x) ≤ A(2/3)
Donc A(x) passe par un max pour x=2/3 et vaut alors 4/27.
4)
Max pour x ≈ 0.67 qui donne A(x) ≈0.14814
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Zoofast.fr s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses mises à jour.