Trouvez des réponses à vos questions les plus pressantes sur Zoofast.fr. Nos experts sont disponibles pour fournir des réponses précises et complètes afin de vous aider à prendre des décisions éclairées sur n'importe quel sujet ou problème que vous rencontrez.
Sagot :
Réponse :
Bonjour
Partie A
1) g(x) = 1 - x + e^x
g'(x) = e^x - 1
2) voir tableau de variation en pièce jointe.
3) Le minimum de la fonction est 2 , donc g(x) > 0
Partie B
f(x) = x + 1 + x/e^x
1) f'(x) = 1 + (e^x - xe^x)/(e^x)² = 1 + (e^x(1-x)/(e^x)² = 1 + (1-x)/e^x
f'(x) = (e^x + 1 - x)/e^x = (1 - x + e^x)e^-x = e^-xg(x)
2) on a vu dans la partie A que g(x) > 0
Donc f'(x) > 0
La fonction f est donc strictement croissant sur R
3) f'(0) = 2
f(0) = 1
Donc une équation de la tangente à Cf au point d'abscisse 0 est :
y = f'(0)(x-0) + f(0) = 2x + 1
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous créons une ressource de savoir précieuse. Chaque réponse que vous cherchez se trouve sur Zoofast.fr. Merci de votre visite et à très bientôt.