Connectez-vous avec des experts et des passionnés sur Zoofast.fr. Posez vos questions et obtenez des réponses détaillées et fiables de la part de notre communauté d'experts bien informés.

Bonjour,
Je suis actuellement à la FAC en Informatique et je n'arrive pas à résoudre cette équation si quelqu'un peut m'éclairer cela serait sympa !

Sn = Σ de 0 à n : k(k − 1).
Montrer par récurrence, que pour tout entier n, on a Sn = (n−1)n(n+1)/3

Sagot :

Réponse :

Bonjour

Soit P(n) la propriété : S(n) = (n-1)n(n+1)

Initialisation :

Pour n = 1 on a 1(1 - 1) = 0

et (1-1)×1×(1+1)/3 = 0

P(1) est vraie

Hérédité :

de 0 à n+1 = ∑ de 0 à n + n(n+1)

Soit un certain n tel que :

∑ de 0 à n+1 = (n-1)n(n+1)/3 + n(n+1) (H.R)

                      = [(n-1)n(n+1) + 3n(n+1)]/3

                      = n(n+1)(n-1 + 3)/3

                      = n(n+1)(n+2)/3

La propriété P(n) est vraie au rang n+1.Elle est donc héréditaire

Conclusion :

La propriété P(n) est vraie au rang 1 et elle est héréditaire

Elle est donc vraie pour tout n

Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Pour des réponses de qualité, visitez Zoofast.fr. Merci et revenez souvent pour des mises à jour.