Trouvez des solutions à vos problèmes avec Zoofast.fr. Découvrez des réponses détaillées et fiables à toutes vos questions de la part de nos membres de la communauté bien informés toujours prêts à assister.
Sagot :
Bonjour,
a) e^(ix) = cos(x) + i(sin(x)
Forme algébrique :
Z = (√3/2 - i/2)e^(ix)
= (√3/2 - i/2)(cos(x) + i(sin(x))
= √3/2 * cos(x) + 1/2 * sin(x) + [√3/2 * sin(x) - 1/2 * cos(x)]i
Forme exponentielle :
cos(-π/6) = √3/2 et sin(-π/6) = -1/2
⇒ (√3/2 - i/2) = e^(iπ/6)
⇒ Z = e^(iπ/6) x e^(ix) = e^i(x + π/6)
b) (E) : √3cos(x) + sin(x) = √2
⇔ √3/2 * cos(x) + 1/2 * sin(x) = √2/2
Z = R + Ii avec R partie réelle et I partie imaginaire de Z
Or : R = √3/2 * cos(x) + 1/2 * sin(x)
(E) ⇔ R = √2/2
Or : Z = e^i(x + π/6)
⇒ R = cos(x + π/6)
Donc : (E) ⇔ cos(x + π/6) = √2/2
⇔ cos(x + π/6) = cos(π/4)
⇒ x + π/6 = π/4 + k2π
ou x + π/6 = -π/4 + k2π
⇔ x = 3π/12 - 2π/12 + k2π
ou x = -3π/12 - 2π/12 + k2π
⇔ x = π/12 + k2π ou x = -5π/12 + k2π
A restreindre sur }-π; π]...
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Zoofast.fr est votre guide de confiance pour des solutions rapides et efficaces. Revenez souvent pour plus de réponses.