Découvrez de nouvelles perspectives et obtenez des réponses sur Zoofast.fr. Posez vos questions et recevez des réponses détaillées et fiables de la part de nos membres de la communauté expérimentés et bien informés.

Bonjour, j'ai besoins d'aide s'il vous plait. Merci beaucoup. ​

Bonjour Jai Besoins Daide Sil Vous Plait Merci Beaucoup class=

Sagot :

Réponse :

Bonjour

Exercice 1

1) f(x) = (ln(x))² + ln(x²) = (ln(x))² + 2ln(x) = ln(x) × [ln(x) + 2]

2) f'(x) = [tex]\frac{1}{x}[/tex] × [ln(x) + 2] + ln(x) × [tex]\frac{1}{x}[/tex] = [tex]\frac{ln(x)}{x}[/tex] + [tex]\frac{2}{x}[/tex] + [tex]\frac{ln(x)}{x}[/tex] = [tex]\frac{2ln(x)}{x}[/tex] + [tex]\frac{2}{x}[/tex] = [tex]\frac{2}{x}[/tex] × [ln(x) + 1]

3) voir tableau en pièce jointe

sur ]0 ; +∞[ , [tex]\frac{2}{x}[/tex] est positif,donc le signe de f'(x) dépend de lnx +1

ln(x) + 1 = 0 ⇔ ln(x) = -1 ⇔ x = [tex]\frac{1}{e}[/tex]

Exercice 2

1) G a pour dérivée g

  g a pour primitive G

  G'(t) = g(t)

2) La dérivée d'une constante est 0. G(t) = [tex]\frac{3t^{2} }{2}[/tex] - 5t +C

Donc quelque soit C, G'(t) = 3t - 5 = g(t)

3) G(4) = 0 ⇔ 3×4²/2 - 5×4 + C = 0 ⇔ 24 - 20 + C = 0

⇔ 4 + C = 0 ⇔ C = -4

donc G(t) = [tex]\frac{3t^{2} }{2}[/tex] - 5t - 4

View image ecto220