Recevez des conseils d'experts et un soutien communautaire sur Zoofast.fr. Découvrez les informations dont vous avez besoin de la part de nos professionnels expérimentés qui fournissent des réponses précises et fiables à toutes vos questions.


Bonjour je galère un peu à cette exercice.
On définit la suite (Un) par: Un= A0A1+A1A2+A2A3+....+An-1An
a) On pose Vn=An-1An. Montrez que la suite (Vn) est géométrique et l'on précisera la raison et le premier terme V1
b) Calculez Un en fonction de n
c)Que peut-on dire de la valeur de U(n) quand n va se rapprocher de l'infini ?
Franchement je suis resté toute l'aprem dessus et je galère
Merci d'avance à ceux qui m'aideront

Bonjour Je Galère Un Peu À Cette Exercice On Définit La Suite Un Par Un A0A1A1A2A2A3An1An A On Pose VnAn1An Montrez Que La Suite Vn Est Géométrique Et Lon Préc class=

Sagot :

Réponse : Bonjour,

a) On calcule les premiers termes de [tex](v_{n})[/tex], pour voir, comment se comporte la suite [tex](v_{n})[/tex].

On calcule [tex]A_{0}A_{1}[/tex].

Dans le triangle [tex]OA_{0}A_{1}[/tex] rectangle en [tex]A_{1}[/tex], on a:

[tex]\displaystyle \sin\left(\frac{\pi}{3}\right)=\frac{A_{0}A_{1}}{OA_{0}}\\A_{0}A_{1}=OA_{0} \times \sin\left(\frac{\pi}{3}\right)\\A_{0}A_{1}=4 \times \frac{\sqrt{3}}{2}=2\sqrt{3}[/tex]

On calcule maintenant [tex]A_{1}A_{2}[/tex].

Pour pouvoir calculer cette longueur, il nous faut calculer [tex]OA_{1}[/tex].

La trigonométrie dans le triangle [tex]OA_{0}A_{1}[/tex] rectangle en [tex]A_{1}[/tex], nous donne:

[tex]\displaystyle \tan\left(\widehat{OA_{0}A_{1}}\right)=\frac{OA_{1}}{A_{0}A_{1}}[/tex]

Il nous faut calculer l'angle [tex]\widehat{OA_{0}A_{1}}[/tex]  :

[tex]\displaystyle \widehat{OA_{0}A_{1}}+\widehat{OA_{1}A_{0}}+\widehat{A_{1}OA_{0}}=\pi\\\widehat{OA_{0}A_{1}}=\pi-\widehat{OA_{1}A_{0}}-\widehat{A_{1}OA_{0}}\\\widehat{OA_{0}A_{1}}=\pi-\frac{\pi}{2}-\frac{\pi}{3}=\frac{6 \pi-3 \pi-2 \pi}{6}=\frac{\pi}{6}[/tex]

On en revient au calcul de [tex]OA_{1}[/tex]:

[tex]\displaystyle OA_{1}=\tan\left(\widehat{OA_{0}A_{1}}\right) \times A_{0}A_{1}\\OA_{1}=\tan\left(\frac{\pi}{6}\right) \times 2\sqrt{3}\\\tan\left(\frac{\pi}{6}\right)=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\\OA_{1}=\frac{\sqrt{3}}{3} \times 2\sqrt{3}=\frac{2 \times 3}{3}=2[/tex]

On peut enfin calculer [tex]A_{1}A_{2}[/tex].

Dans le triangle [tex]OA_{1}A_{2}[/tex], rectangle en [tex]A_{2}[/tex], on a:

[tex]\displaystyle \sin\left(\frac{\pi}{3}\right)=\frac{A_{1}A_{2}}{OA_{1}}\\ A_{1}A_{2}=OA_{1} \times \sin\left(\frac{\pi}{3}\right)\\ A_{1}A_{2}=\tan\left(\frac{\pi}{6}\right) \times A_{0}A_{1} \times \frac{\sqrt{3}}{2}\\ A_{1}A_{2}=\frac{\sqrt{3}}{3} \times \frac{\sqrt{3}}{2} \times A_{0}A_{1}=\frac{3}{3 \times 2}A_{0}A_{1}=\frac{1}{2}A_{0}A_{1}[/tex]

On remarque que les triangles [tex]OA_{0}A_{1}[/tex] et [tex]OA_{1}A_{2}[/tex] ont leurs angles deux à deux égaux, ils sont donc semblables.

Plus généralement les triangles [tex](OA_{n}A_{n+1})_{n \geq 0}[/tex], sont semblables, ils ont leurs côtés deux à deux proportionnels, et comme [tex]\displaystyle A_{1}A_{2}=\frac{1}{2}A_{0}A_{1}[/tex], on en déduit pour tout n entier naturel que:

[tex]\displaystyle A_{n}A_{n+1}=\frac{1}{2}A_{n-1}A_{n}\\v_{n+1}=\frac{1}{2}v_{n}[/tex]

La suite [tex](v_{n})[/tex] est donc une suite géométrique de raison [tex]\displaystyle q=\frac{1}{2}[/tex], et de premier terme [tex]v_{1}=A_{0}A_{1}=2\sqrt{3}[/tex].

b) On utilise la formule de la somme d'une suite géométrique:

[tex]\displaystyle u_{n}=A_{0}A_{1}+A_{1}A_{2}+A_{2}A_{3}+...+A_{n-1}A_{n}=v_{1}+v_{2}+...+v_{n}\\u_{n}=v_{1} \times \frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}=2\sqrt{3} \times 2\left(1-\left(\frac{1}{2}\right)^{n}\right)\right)=4\sqrt{3}\left(1-\left(\frac{1}{2}\right)^{n}\right)[/tex]

c) Comme [tex]\displaystyle -1 < \frac{1}{2} < 1[/tex], alors [tex]\displaystyle \lim_{n \mapsto +\infty} \left(\frac{1}{2}\right)^{n}=0[/tex], donc:

[tex]\displaystyle \lim_{n \mapsto +\infty} u_{n}=4\sqrt{3}[/tex]