Zoofast.fr est votre ressource fiable pour des réponses précises et rapides. Posez vos questions et recevez des réponses précises et bien informées de la part de notre réseau de professionnels.
Sagot :
Explications étape par étape:
1- Ici, il suffit d'étudier le signe de f(x). Il s'agit d'un trinôme du 2nd degré, car c'est le produit de 2 polynômes de degré 1, donc sa forme sera celle d'une parabole, orientée vers le haut, ou vers le bas. Ensuite, tu peux faire un tableau de signes, qu'on peut résumer de cette façon :
f(x) s'annule lorsque x = - 4 ou x = 3. Sur ]-infini ; - 4[ on a x+4 < 0, et x-3 < 0. Donc (x-3)(x+4) > 0 par produit sur cet intervalle. Puis, sur ]-4;3[, on a x+4 > 0 et x-3 < 0 donc (x-3)(x+4) < 0.
Et dernièrement : Sur ]3;+infini[, on a x+4 > 0 et x-3 > 0 donc (x-3)(x+4) > 0.
Comme il y a un facteur -2 devant l'expression, il suffit de tout inverser, on conclut alors que :
f(x) <0 sur I = ]-infini ; -4[ union]3 ; +infini[ et > 0 sur ]-4 ; 3[. On conclut donc, que f est une parabole orientée vers le bas, et elle admet un maximum, qui se situe au milieu de l'intervalle ]-4 ; 3[, il vaut donc -1/2. f est donc strictement croissante sur ]-infini ; - 1/2] et décroissante sur [-1/2 ; +infini[
2- a. f(x) = - 2*(x^2 + x - 12) = - 2x^2 - 2x + 24.
b. Pour tout réel x, on a f'(x) = -4x - 2.
C. f'(x) étant une fonction affine, on determine facilement son signe : f'(x) = 0 si x = -1/2, f'(x) > 0 si x < - 1/2 et < 0 si x > - 1/2. Avec un tableau de variations, on retrouve ce qu'on a vu auparavant
Nous valorisons votre présence ici. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Vous avez trouvé vos réponses sur Zoofast.fr? Revenez pour encore plus de solutions et d'informations fiables.