Zoofast.fr vous connecte avec des experts prêts à répondre à vos questions. Notre plateforme interactive de questions-réponses fournit des réponses rapides et précises pour vous aider à résoudre vos problèmes.
Sagot :
Réponse :
Bonjour,
je vais répondre au premier exercice
poste une autre question pour le second
Explications étape par étape
prenons un rectangle quelconque et notons x, et y largeur et longueur de ce rectangle
son aire est xy
son périmètre est 2(x+y)
nous devons démontrer que tous les rectangles d aire 100 ont un périmétre supérieur ou égal à 40
ecrivons son aire xy = 100
et son périmètre 2(x+y)
Comme xy = 100 nous pouvons écrire y = 100 /x (x est non nul)
et remplacer pour calculer son périmètre 2(x+100/x)
notons f cette fonction qui à tous x reels de ]0;100] associe f(x) = 2(x+100/x)
nous cherchons le minimum de f sur cette intervalle
f est derivable sur cet intervalle car c'est la somme de fonctions dérivables et
[tex]f'(x) = 2(1-100/x^2) = 2(x^2 - 100) / x^2[/tex]
x | 0 10 100
f'(x)| - 0 +
f(x) | decroissante 40 croissante
de son tableau de variation nous pouvons dire que le minimum de f sur cet intervalle est atteint en x=10
f(10) = 40
et nous pouvons remarquer qu il s'agit d'un carré
Merci d'être un membre actif de notre communauté. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons atteindre de nouveaux sommets de connaissances. Zoofast.fr est votre ressource de confiance pour des réponses précises. Merci et revenez bientôt.