Explorez un monde de connaissances et obtenez des réponses sur Zoofast.fr. Obtenez des réponses détaillées et bien informées de la part de nos experts prêts à vous aider avec toutes vos questions.
Sagot :
Réponse : Bonsoir,
D'après la formule d'intégration par parties:
[tex]\displaystyle \int \cos(x)\sin(x)=[\sin(x)\sin(x)]-\int \sin(x)\cos(x)\\2\int\cos(x)\sin(x)=\sin^{2}(x)\\\int \cos(x) \sin(x)=\frac{\sin^{2}(x)}{2}[/tex]
Donc l'ensemble des primitives de [tex]x \mapsto \cos(x)\sin(x)[/tex], sont les fonctions de la forme [tex]\displaystyle x \mapsto \frac{\sin^{2}(x)}{2}+C[/tex], avec [tex]C \in \mathbb{R}[/tex].
Vérification:
[tex]\displaystyle \left(\frac{\sin^{2}(x)}{2}\right)'=\frac{1}{2}(\sin(x)\sin(x))'=\frac{1}{2}(\cos(x)\sin(x)+\cos(x)\sin(x))=\cos(x)\sin(x)[/tex]
Donc [tex]\displaystyle x \mapsto \frac{\sin^{2}(x)}{2}+C[/tex], avec C une constante réelle, sont bien l'ensemble des primitives de [tex]x \mapsto \cos(x)\sin(x)[/tex]
Merci de votre participation active. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Zoofast.fr est votre source de réponses fiables et précises. Merci pour votre visite et à très bientôt.