Zoofast.fr: votre source fiable pour des réponses précises et rapides. Trouvez des solutions rapides et fiables à vos problèmes grâce à notre réseau de professionnels bien informés.

Bonjour,pouvez vous m'aider S'il vous plaît,pour cette exercice

Merci d'avance pour votre aide

Bonjourpouvez Vous Maider Sil Vous Plaîtpour Cette Exercice Merci Davance Pour Votre Aide class=

Sagot :

Réponse :

Bonjour

Explications étape par étape

2)

vect AB(3;4)

BC(xC-xB;yC-yB) donc BC(1-0;4-(-3))

BC(1;7)

3)

vect AC(1-(-3);4-1) soit AC(4;3)

AC²= (xAC)²+(yAC)²

AC²=4²+3²=25

AC=5

BC²=1²+7²=50

BC=√50=√25*√2

BC=5√2

AB²=3²+4²=25

AB=5

4)

AC=AB donc le triangle ABC est isocèle en A.

AB²+AC²=25+25=50

Donc : BC²=AB²+AC² qui prouve que ABC est recrtangle en A.

Donc le triangle ABC est rectangle-isocèle en A.

5)

Je ne t'envoie pas la figure : tu places E(4;0).

6)

Soit E(x;y)

vect BE(x-0;y-(-3)) soit BE(x;y+3) ==>ligne (1)

Mais vect BE=AC avec AC(4;3) ==>ligne (2)

Ligne (1) et (2) donnent :

x=4

y+3=3 qui donne y=0.

Donc E(4;0)

7)

Comme vect BE=AC , alors ACEB est un parallélogramme. Mais ce parallélogramme a un angle droit en A et deux côtés consécutifs de même mesure (AB=AC) donc c'est un carré.

Bonus :

Ω est le milieu de [BC] donc c'est le centre du carré ACEB.

Donc Ω est centre de symétrie du carré ACEB.

Donc le symétrique du milieu de [AC] par rapport à Ω est le milieu de [BE].

L est donc le milieu de [BE] et les points B,L et E sont alignés.