Rejoignez la communauté Zoofast.fr et obtenez les réponses dont vous avez besoin. Obtenez des réponses précises et complètes de la part de nos membres de la communauté bien informés et prêts à aider.

Bonsoir, j'aurai besoin d'aide sur un exercice de maths s'il vous plait
Démontrer que la fonction u : x [tex]\to \frac{2}{x-1}[/tex] est dérivable en - 1 et donner la valeur de u' ( - 1 )

merci

Sagot :

Bonsoir,

[tex]f(x) = \frac{2}{x - 1} [/tex]

or : f'(u/v) = (u'v - uv')/(v^2)

avec u = 2 ; u' = 0 ; v = x - 1 et v' = 1

ainsi (u)' = 2/((x - 1)^2)

x - 1 = 0 => x = 1

Ainsi u est dérivable sur R\{1} elle est donc dérivable en - 1

u'(1) = 2/((- 1 - 1)^2 = 2/(-2)^2 = 2/4 = 1/2