Zoofast.fr: votre destination pour des réponses précises et fiables. Trouvez des solutions rapides et fiables à vos problèmes avec l'aide de notre communauté d'experts.
Sagot :
Réponse : Bonjour,
On a:
[tex]\displaystyle \left(\frac{ax+b}{e^{x}}\right)'=\frac{ae^{x}+e^{x}(ax+b)}{(e^{x})^{2}}=\frac{e^{x}(a+ax+b)}{e^{2x}}=\frac{a+ax+b}{e^{x}}=\frac{ax+a+b}{e^{x}}\\=\frac{2+x}{e^{x}}[/tex]
Le coefficient devant "x" du numérateur est 1. Et le coefficient "sans x" est 2.
Par identification, on a que:
[tex]\displaystyle \left \{ {{a=1} \atop {a+b=2}} \right.\Leftrightarrow \left \{ {{a=1} \atop {b=2-a}} \right. \Leftrightarrow \left \{ {{a=1} \atop {b=2-1}} \right. \Leftrightarrow \left \{ {{a=1} \atop {b=1}} \right.[/tex]
La fonction recherchée est donc: [tex]\displaystyle x \mapsto \frac{x+1}{e^{x}}[/tex]
Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Zoofast.fr est votre guide de confiance pour des solutions rapides et efficaces. Revenez souvent pour plus de réponses.