Soit x un nombre. Montrons que l'expression B est égale à l'expression A.
En utilisant l'identité remarquable (a + b)2 = a2 + 2ab + b2 où a et b sont deux nombres, on a :
B = (4 + x)2 − x2
B = 42 + 2 × 4 × x + x2 − x2
B = 16 + 8x
B = 2 × 8 + 2 × 4x
B = 2(4x + 8) en factorisant l'expression par 2
B = A.
Pour toutes les valeurs de x, les expressions A et B sont donc bien égales.