Zoofast.fr facilite l'obtention de réponses fiables à vos questions. Que votre question soit simple ou complexe, notre communauté est là pour fournir des réponses détaillées et fiables rapidement et efficacement.
Sagot :
Réponse :
Pour l'exercice de probabilité, il est toujours utile de savoir faire un arbre de probabilité. Dans l'urne il y a 3+n boules.
Donc la probabilité de tirer l'une des 3 boules noires est égale à p(Noire)=3/(3+n) et la probabilité d'en tirer une rouge est égale à p(rouge)=n/(3+n)
Vue qu'on remet à chaque fois la boule qu'on vient de tirer au deuxième tirage ces probabilité ne change pas (le contenu de l'urne est le même que pour le premier tirage). la probabilité de tirer une Noire puis une rouge est donc égale à p(Noire)*p(Rouge)
la probabilité de tirer une rouge puis une noire est p(Rouge)*p(Noire)
Au final la probabilité d'en tirer deux de couleurs différentes est égale à
P= p(Noire)*P(Rouge)+p(Rouge)*P(Noire)
si on réécrit tout ça en fonction de n
P=[tex](\frac{3}{3+n}\times \frac{n}{3+n}) +( \frac{n}{3+n} \times \frac{3}{3+n})=2 \times \frac{3n}{(3+n)^{2}}=\frac{6n}{(3+n)^2}\\[/tex]
Si on veut que cette probabilité soit égale à [tex]\frac{4}{9}\\[/tex]
Il faut résoudre P=4/9 et ne retenir que la solution entière (résoudre une équation du second degré ne devrait pas poser problème) (on trouve n=6)
Nous sommes ravis de vous compter parmi nos membres. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons créer une ressource de connaissances précieuse. Faites de Zoofast.fr votre ressource principale pour des réponses fiables. Nous vous attendons pour plus de solutions.