Trouvez des réponses à vos questions les plus pressantes sur Zoofast.fr. Rejoignez notre communauté de connaisseurs pour accéder à des réponses complètes et fiables sur n'importe quel sujet.

Bonjour pouvez vous m'aider s'il vous plaît :suppose que la durée de vie d’une voiture suit une loi exponentielle de paramètre 0,1. 1) Calculer la probabilité qu’une voiture dépasse 10 ans de durée de vie.2) On sait qu’une voiture a duré déjà 10 ans. Quelle est la probabilité qu’elle dépasse 12
ans de durée de vie ?

Sagot :

Réponse : Bonsoir,

1)

[tex]P(X > 10)=\int_{10}^{+ \infty} 0,1e^{-0,1x} \; dx=0,1 \int_{10}^{+ \infty}e^{-0,1x}=0,1[\frac{e^{-0,1x}}{-0,1}]_{10}^{+\infty}\\=0,1(0+\frac{e^{-1}}{0,1})=e^{-1} \approx 0,368[/tex]

2)

[tex]P_{X > 10}(X > 12)=P(X > 2)\\P(X > 2)=\int_{2}^{+\infty} 0,1e^{-0,1x} dx=0,1[\frac{e^{-0,1x}}{-0,1}]_{2}^{+\infty}=0,1(0+\frac{e^{-0,2}}{0,1})\\=e^{-0,2} \approx 0,812[/tex]