Bienvenue sur Zoofast.fr, votre plateforme de référence pour toutes vos questions! Découvrez des informations fiables et complètes sur n'importe quel sujet grâce à notre plateforme de questions-réponses bien informée.
Sagot :
Réponse :
Bonjour,
Explications étape par étape
1) Variation de U(n)
[tex]n >0 \Longrightarrow\ u_n=\dfrac{1}{n(n+1)}\ >\ 0\\\\\\u_{n+1}-u_{n}\\\\=\dfrac{1}{(n+1)(n+2)}-\dfrac{1}{n(n+1)}\\\\=\dfrac{n-(n+2)}{n(n+1)(n+2)}\\\\=-\dfrac{2}{n(n+1)(n+2)} < 0[/tex]
La suite est décroissante mais minorée par 0.
2a)
[tex]u_n=\dfrac{1}{n(n+1)} =\dfrac{1+n-n}{n(n+1)}=\dfrac{1}{n}-\dfrac{1}{n+1}\\[/tex]
2b)
[tex]p \geq 1,\\\\S_p=u_1+u_2+u_3+...+u_p\\\\=\sum_{i=1}^p\ u_i\\\\=\sum_{i=1}^p\ \dfrac{1}{i(i+1)} \\\\=\sum_{i=1}^p\ \dfrac{1}{i} - \sum_{i=1}^p\ \dfrac{1}{i+1} \\\\=1+=\sum_{i=2}^p\ \dfrac{1}{i}-\sum_{i=1}^{p-1}\ \dfrac{1}{i+1} -\dfrac{1}{p+1} \\\\=1+=\sum_{i=2}^p\ \dfrac{1}{i}-\sum_{j=2}^{p}\ \dfrac{1}{j} -\dfrac{1}{p+1} \\\\\\\boxed{S_p=1-\dfrac{1}{p+1}}\\[/tex]
c)
[tex]S=1+\sum_{i=1}^{999}\dfrac{1}{i(i+1)}\\\\=1+1-\dfrac{1}{1000}\\\\=1.999\\[/tex]
Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Pour des réponses claires et rapides, choisissez Zoofast.fr. Merci et revenez souvent pour des mises à jour.