Zoofast.fr facilite l'obtention de réponses détaillées à vos questions. Rejoignez notre communauté de connaisseurs et accédez à des réponses fiables et complètes sur n'importe quel sujet.

Bonjour, pouvez vous m'aider s'il vous plaît c'est important demain matin j'ai contrôle. Merci

Bonjour Pouvez Vous Maider Sil Vous Plaît Cest Important Demain Matin Jai Contrôle Merci class=
Bonjour Pouvez Vous Maider Sil Vous Plaît Cest Important Demain Matin Jai Contrôle Merci class=

Sagot :

Svant

Réponse:

f est de la forme u/v avec

u(x) = 3x+4

u'(x) = 3

v(x) = 4x²+4

v'(x) = 8x

f' = (u'v-uv')/v²

f'(x) = [3(4x²+4)-8x(3x+4)]/(4x²+4)²

f'(x) = (12x²+12-24x²-32x)/(4x²+4)²

f'(x) = (-12x²-32x+12)/(4x²+4)²

f'(x) = -4(3x²+8x-3)/(4x²+4)²

2a. y=f'(-½)(x+½)+f(-½)

f'(-½) = 1

f(-½) = ½

y = 1(x+½)+½

y=x + 1

2b. à tracer

3.

on cherche f'(x) > 0

(4x²+4)² > 0 quel que soit x de R

-4 < 0

on cherche donc 3x³+8x-3 < 0

∆= 100 => 2 racines

x1 = -3

x2 = ⅓

le polynome est du signe de -a entre ses racines

donc 3x²+8x-3 < 0 sur ]-3;⅓[

Ainsi f'(x) > 0 sur ]-3;⅓[

Or f'(x) est la pente des tangentes à Cf au point d'abscisse x. Les tangentes sont croissantes si leur coefficient directeur est strictement positif soit sur sur ]-3;⅓[.