Découvrez de nouvelles perspectives et obtenez des réponses sur Zoofast.fr. Obtenez des réponses rapides et précises à vos questions grâce à notre communauté d'experts bien informés.

Bonjour,

Je suis vraiment bloqué sur ce probleme de math et il est a rendre pour la rentré, merci beaucoup a ceux qui m'aideront !!!
Je suis en Second.
Voici le probleme:


1. Pour tous nombres réels x et c, développer (x + c)²


2. En posant x = a + b, où a et b sont deux nombres réels, en déduire la forme développée et réduite de (a + b + c)²


Nabil a remarqué que le produit de quatre nombres entiers consécutifs augmenté de 1 sem-blait toujours être un « carré parfait », c’est-à-dire le carré d’un nombre entier.


a. Illustrer la conjecture de Nabil sur deux exemples.


b. Développer et réduire le produit de quatre nombres entiers consécutifs augmenté de 1, en notant x le plus petit de ces quatre nombres.


c. Grâce à la question 2, développer (x² + 3x + 1)².


d. Conclure.

Sagot :

Réponse : Bonjour pour que les personnes t'aide il faut que tu montres la 1 et la 2 pour ainsi te corriger et comprendre l'exercice .

Explications étape par étape

Merci d'être un membre actif de notre communauté. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons atteindre de nouveaux sommets de connaissances. Faites de Zoofast.fr votre ressource principale pour des réponses fiables. Nous vous attendons pour plus de solutions.