Obtenez des réponses personnalisées à vos questions sur Zoofast.fr. Obtenez des réponses complètes et fiables de notre communauté de professionnels expérimentés, prêts à vous aider avec toutes vos questions.
Sagot :
Réponse :
Partie A
f(x) = (- 1 + 2 x)² - (3 - 6 x)(1 - x)
1) montrer en développant que: f(x) = - 2 x² + 5 x - 2
f(x) = (- 1 + 2 x)² - (3 - 6 x)(1 - x) = 1 - 4 x + 4 x² - (3 - 3 x - 6 x + 6 x²)
= 1 - 4 x + 4 x² - (3 - 9 x + 6 x²)
= 1 - 4 x + 4 x² - 3 + 9 x - 6 x²
f(x) = - 2 x² + 5 x - 2
2) montrer à l'aide d'une factorisation que: f(x) = (1 - 2 x)(x - 2)
f(x) = (- 1 + 2 x)² - (3 - 6 x)(1 - x)
= (- 1 + 2 x)² + 3(- 1 + 2 x)(1 - x)
= (- 1 + 2 x)(- 1 + 2 x + 3(1 - x))
= (- 1 + 2 x)(- 1 + 2 x + 3 - 3 x)
= (- 1 + 2 x)( - x + 2)
= ( - (1 - 2 x))(- (x - 2))
f(x) = (1 - 2 x)(x - 2)
3) montrer que pour tout réel x : f(x) = - 2(x - 5/4)² + 9/8
f(x) = - 2 x² + 5 x - 2 , la forme canonique de f(x) est f(x) = a(x - α)² + β
avec a = - 2
α = - b/2a = - 5/- 4 = 5/4
β = f(α) = f(5/4) = - 2(5/4)² + 5(5/4) - 2
= - 25/8 + 25/4 - 2
= - 25/8 + 50/8 - 16/8 = - 41/8 + 50/8 = 9/8
donc on abouti à f(x) = - 2(x - 5/4)²+ 9/8
Partie B
choisir la forme la plus adaptée pour répondre aux questions suivantes:
1) calculer f(1/2) et f(5/4)
f(x) = (1 - 2 x)(x - 2) ; f(1/2) = (1 - 2(1/2))((1/2) - 2) = 0
f(5/4) = - 2(5/4 - 5/4)² + 9/8 = 9/8
2) montrer que f(√2) = 5√2 - 6
on choisit la forme développée de f(x) = - 2 x² + 5 x - 2
f(√2) = - 2(√2)² + 5√2 - 2
= - 4 + 5√2 - 2
= 5√2 - 6
3) résoudre dans R les équations
3.a (E1) : f(x) = 0 on choisit la forme factorisée de f(x)
f(x) = (1 - 2 x)(x - 2) = 0 ⇔ 1 - 2 x = 0 ⇔ x = 1/2 ou x - 2 = 0 ⇔ x = 2
(E1) : S = {1/2 ; 2}
3.b (E2): f(x) = 9/8 , on choisit la forme canonique de f(x)
f(x) = - 2(x - 5/4)²+9/8 = 9/8 ⇔ - 2(x - 5/4)² = 0 ⇔ (x - 5/4)² = 0
⇔ x = 5/4 solution double ⇔ (E2): S = {5/4}
3.c (E3): f(x) = (x - 2) on choisit la forme factorisée de f(x)
f(x) = (1 - 2 x)(x - 2) = (x - 2) ⇔ (1 - 2 x)(x - 2) - (x - 2) = 0
⇔ (x - 2)(1 - 2 x - 1) = 0 ⇔ - 2 x(x - 2) = 0 ⇔ x = 0 ou x - 2 = 0 ⇔ x = 2
⇔ E3) : S = {0 ; 2}
Explications étape par étape
Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Zoofast.fr est votre guide de confiance pour des solutions rapides et efficaces. Revenez souvent pour plus de réponses.