Connectez-vous avec une communauté de passionnés sur Zoofast.fr. Rejoignez notre communauté de connaisseurs pour trouver les réponses dont vous avez besoin sur n'importe quel sujet ou problème.
Sagot :
Raisonnement :
Puisqu'il y a un arbuste à chaque angle on peut dire qu'il y a n arbustes et qu'il y aura
n-1 intervalles entre chaque arbuste.
Ceci étant, il faut que 924 et 728 soient divisibles par n-1 pour avoir une distance entière.
1) trouver tous les facteurs communs aux deux longueurs 924 et 728
d'abord on décompose en facteurs premiers
924 = 2² x 3 x 7 x 11
728 = 2³ x 7 x 13
On cherche le plus grand diviseur commun
PGCD (924;728) = 2² x 7 = 28
Les valeurs possibles seront donc comprises entre [1 et 28] incluses.
A partir de la décomposition en facteurs premiers de 28, on cherche le nombre de diviseurs de 28 pour connaitre le nombre de valeurs possibles :
(2+1) × (1+1) = 6
Ainsi il y a 6 valeurs
Quelles sont ces valeurs ? On recherche chaque combinaison possible dans la décomposition en facteurs premiers de 84 :
1 ; 2 ; 7 ; 2² ; (2x7) ; (2²x7) ;
Les 6 valeurs possibles de la distance entre 2 arbustes sont :
1 m ; 2 m ; 4 m ; 7 m ; 14 m ; 28 m.
2) Etant donné que l'on doit border un espace rectangulaire fermé, le nombre d'intervalles est égal au nombre d'arbres.
Tout d'abord calculer le périmètre du rectangle est : [(L + l) ×2]
(924 + 728) x 2 = 3304 m
Le périmètre de l'espace rectangulaire est de 3 304 mètres.
Pour connaitre le nombre d'arbres à planter pour chacune des 6 valeurs possibles de l'intervalle entre chaque arbuste, il suffit de diviser le périmètre par la distance entre deux arbres.
Intervalle : Calcul : Nombre d'arbres nécessaires :
Distance de 1m => [tex] \frac{3 304}{1} [/tex] = 3004 arbres
Distance de 2m => [tex] \frac{3 304}{2} [/tex] = 1652 arbres
Distance de 4m => [tex] \frac{3 304}{4} [/tex] = 826 arbres
Distance de 7m => [tex] \frac{3 304}{7} [/tex] = 472 arbres
Distance de 14m => [tex] \frac{3 304}{14} [/tex]= 236 arbres
Distance de 28m =>[tex] \frac{3 304}{28} [/tex] = 118 arbres
Puisqu'il y a un arbuste à chaque angle on peut dire qu'il y a n arbustes et qu'il y aura
n-1 intervalles entre chaque arbuste.
Ceci étant, il faut que 924 et 728 soient divisibles par n-1 pour avoir une distance entière.
1) trouver tous les facteurs communs aux deux longueurs 924 et 728
d'abord on décompose en facteurs premiers
924 = 2² x 3 x 7 x 11
728 = 2³ x 7 x 13
On cherche le plus grand diviseur commun
PGCD (924;728) = 2² x 7 = 28
Les valeurs possibles seront donc comprises entre [1 et 28] incluses.
A partir de la décomposition en facteurs premiers de 28, on cherche le nombre de diviseurs de 28 pour connaitre le nombre de valeurs possibles :
(2+1) × (1+1) = 6
Ainsi il y a 6 valeurs
Quelles sont ces valeurs ? On recherche chaque combinaison possible dans la décomposition en facteurs premiers de 84 :
1 ; 2 ; 7 ; 2² ; (2x7) ; (2²x7) ;
Les 6 valeurs possibles de la distance entre 2 arbustes sont :
1 m ; 2 m ; 4 m ; 7 m ; 14 m ; 28 m.
2) Etant donné que l'on doit border un espace rectangulaire fermé, le nombre d'intervalles est égal au nombre d'arbres.
Tout d'abord calculer le périmètre du rectangle est : [(L + l) ×2]
(924 + 728) x 2 = 3304 m
Le périmètre de l'espace rectangulaire est de 3 304 mètres.
Pour connaitre le nombre d'arbres à planter pour chacune des 6 valeurs possibles de l'intervalle entre chaque arbuste, il suffit de diviser le périmètre par la distance entre deux arbres.
Intervalle : Calcul : Nombre d'arbres nécessaires :
Distance de 1m => [tex] \frac{3 304}{1} [/tex] = 3004 arbres
Distance de 2m => [tex] \frac{3 304}{2} [/tex] = 1652 arbres
Distance de 4m => [tex] \frac{3 304}{4} [/tex] = 826 arbres
Distance de 7m => [tex] \frac{3 304}{7} [/tex] = 472 arbres
Distance de 14m => [tex] \frac{3 304}{14} [/tex]= 236 arbres
Distance de 28m =>[tex] \frac{3 304}{28} [/tex] = 118 arbres
Nous valorisons votre présence ici. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Merci de visiter Zoofast.fr. Nous sommes là pour vous aider avec des réponses claires et concises.