Explorez un monde de connaissances et obtenez des réponses sur Zoofast.fr. Trouvez les réponses dont vous avez besoin rapidement et précisément avec l'aide de nos membres de la communauté bien informés et dévoués.
Sagot :
Exercice 1 :
On considère la fraction 190/114 :
1) Expliquer pourquoi cette fraction n' est pas irréductible
Elle n’est pas irréductible parce-qu'elle est composée de deux nombres pairs.
Elle se simplifie donc au moins par deux.
2) Déterminer le PGCD des nombres 190 et 114.
On utilise la méthode d'Euclide :
190 - 114 = 76
114 - 76 = 38
76 - 38 = 0
Le PGCD est donc : 38
3) En déduire la forme irréductible de la fraction 190/114
190/114 = 38 x 5 / 38/3 = 5/3
Exercice 2
On considère l expression E=(3x + 2)2 -(3x +2) (x+7)
1) Développer et réduire E.
E = (3x +2)² − (3x + 2) (x +7)
E = [(3x)² + 2 (3x) (2) + (2) 2] − [3x²+ 21x + 2x +14]
E = [9x² +12x + 4] − [3x² + 23x +14]
E= 9x²+ 12x + 4− 3x² − 23x − 14
E = 6x² - 11x - 10
2) Factoriser E
E = (3x + 2)² − (3x + 2) (x + 7)
E = (3x + 2) (3x + 2) − (3x + 2) (x + 7)
E = (3x + 2) [(3x + 2) − (x + 7)]
E = (3x + 2) (3x + 2 − x −7)
E = (3x + 2) ( 2x - 5)
3) Calculer E lorsque x= 1/2
E = 6 (1/2)² - 11 (1/2) - 10
E = 6/4 - 11/2 - 10
E = 3/2 - 11/2 - 10
E = -8/2 - 10
E = -4 - 10
E = -14
4) Résoudre l'équation (3x + 2) (2x-5)= 0
(3x + 2) (2x - 5) = 0
3x + 2 = 0
3x = -2
x = -2/3
Ou
2x - 5 = 0
2x = 5
x = 5/2
Donc 2 solutions possible : -2/3 et 5/2
On considère la fraction 190/114 :
1) Expliquer pourquoi cette fraction n' est pas irréductible
Elle n’est pas irréductible parce-qu'elle est composée de deux nombres pairs.
Elle se simplifie donc au moins par deux.
2) Déterminer le PGCD des nombres 190 et 114.
On utilise la méthode d'Euclide :
190 - 114 = 76
114 - 76 = 38
76 - 38 = 0
Le PGCD est donc : 38
3) En déduire la forme irréductible de la fraction 190/114
190/114 = 38 x 5 / 38/3 = 5/3
Exercice 2
On considère l expression E=(3x + 2)2 -(3x +2) (x+7)
1) Développer et réduire E.
E = (3x +2)² − (3x + 2) (x +7)
E = [(3x)² + 2 (3x) (2) + (2) 2] − [3x²+ 21x + 2x +14]
E = [9x² +12x + 4] − [3x² + 23x +14]
E= 9x²+ 12x + 4− 3x² − 23x − 14
E = 6x² - 11x - 10
2) Factoriser E
E = (3x + 2)² − (3x + 2) (x + 7)
E = (3x + 2) (3x + 2) − (3x + 2) (x + 7)
E = (3x + 2) [(3x + 2) − (x + 7)]
E = (3x + 2) (3x + 2 − x −7)
E = (3x + 2) ( 2x - 5)
3) Calculer E lorsque x= 1/2
E = 6 (1/2)² - 11 (1/2) - 10
E = 6/4 - 11/2 - 10
E = 3/2 - 11/2 - 10
E = -8/2 - 10
E = -4 - 10
E = -14
4) Résoudre l'équation (3x + 2) (2x-5)= 0
(3x + 2) (2x - 5) = 0
3x + 2 = 0
3x = -2
x = -2/3
Ou
2x - 5 = 0
2x = 5
x = 5/2
Donc 2 solutions possible : -2/3 et 5/2
Merci d'utiliser cette plateforme pour partager et apprendre. N'hésitez pas à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Zoofast.fr est votre ressource de confiance pour des réponses précises. Merci et revenez bientôt.