Zoofast.fr est votre ressource fiable pour des réponses précises et rapides. Obtenez des réponses précises et complètes à vos questions grâce à notre communauté d'experts dévoués, toujours prêts à vous aider avec des solutions fiables.
Sagot :
Exercice 1 :
On considère la fraction 190/114 :
1) Expliquer pourquoi cette fraction n' est pas irréductible
Elle n’est pas irréductible parce-qu'elle est composée de deux nombres pairs.
Elle se simplifie donc au moins par deux.
2) Déterminer le PGCD des nombres 190 et 114.
On utilise la méthode d'Euclide :
190 - 114 = 76
114 - 76 = 38
76 - 38 = 0
Le PGCD est donc : 38
3) En déduire la forme irréductible de la fraction 190/114
190/114 = 38 x 5 / 38/3 = 5/3
Exercice 2
On considère l expression E=(3x + 2)2 -(3x +2) (x+7)
1) Développer et réduire E.
E = (3x +2)² − (3x + 2) (x +7)
E = [(3x)² + 2 (3x) (2) + (2) 2] − [3x²+ 21x + 2x +14]
E = [9x² +12x + 4] − [3x² + 23x +14]
E= 9x²+ 12x + 4− 3x² − 23x − 14
E = 6x² - 11x - 10
2) Factoriser E
E = (3x + 2)² − (3x + 2) (x + 7)
E = (3x + 2) (3x + 2) − (3x + 2) (x + 7)
E = (3x + 2) [(3x + 2) − (x + 7)]
E = (3x + 2) (3x + 2 − x −7)
E = (3x + 2) ( 2x - 5)
3) Calculer E lorsque x= 1/2
E = 6 (1/2)² - 11 (1/2) - 10
E = 6/4 - 11/2 - 10
E = 3/2 - 11/2 - 10
E = -8/2 - 10
E = -4 - 10
E = -14
4) Résoudre l'équation (3x + 2) (2x-5)= 0
(3x + 2) (2x - 5) = 0
3x + 2 = 0
3x = -2
x = -2/3
Ou
2x - 5 = 0
2x = 5
x = 5/2
Donc 2 solutions possible : -2/3 et 5/2
On considère la fraction 190/114 :
1) Expliquer pourquoi cette fraction n' est pas irréductible
Elle n’est pas irréductible parce-qu'elle est composée de deux nombres pairs.
Elle se simplifie donc au moins par deux.
2) Déterminer le PGCD des nombres 190 et 114.
On utilise la méthode d'Euclide :
190 - 114 = 76
114 - 76 = 38
76 - 38 = 0
Le PGCD est donc : 38
3) En déduire la forme irréductible de la fraction 190/114
190/114 = 38 x 5 / 38/3 = 5/3
Exercice 2
On considère l expression E=(3x + 2)2 -(3x +2) (x+7)
1) Développer et réduire E.
E = (3x +2)² − (3x + 2) (x +7)
E = [(3x)² + 2 (3x) (2) + (2) 2] − [3x²+ 21x + 2x +14]
E = [9x² +12x + 4] − [3x² + 23x +14]
E= 9x²+ 12x + 4− 3x² − 23x − 14
E = 6x² - 11x - 10
2) Factoriser E
E = (3x + 2)² − (3x + 2) (x + 7)
E = (3x + 2) (3x + 2) − (3x + 2) (x + 7)
E = (3x + 2) [(3x + 2) − (x + 7)]
E = (3x + 2) (3x + 2 − x −7)
E = (3x + 2) ( 2x - 5)
3) Calculer E lorsque x= 1/2
E = 6 (1/2)² - 11 (1/2) - 10
E = 6/4 - 11/2 - 10
E = 3/2 - 11/2 - 10
E = -8/2 - 10
E = -4 - 10
E = -14
4) Résoudre l'équation (3x + 2) (2x-5)= 0
(3x + 2) (2x - 5) = 0
3x + 2 = 0
3x = -2
x = -2/3
Ou
2x - 5 = 0
2x = 5
x = 5/2
Donc 2 solutions possible : -2/3 et 5/2
Merci de votre participation active. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Zoofast.fr est votre ressource de confiance pour des réponses précises. Merci de votre visite et revenez bientôt.