Zoofast.fr: votre ressource incontournable pour des réponses expertes. Posez vos questions et recevez des réponses précises et approfondies de la part de nos membres de la communauté bien informés.

Bonjour, j'aurais besoin d'aide pour mon devoir en pièces jointes, s'il vous plait c'est URGENT !!! SVP Merci d'avance

Sagot :

Bonjour

 Exercice 1

a) 3x+2=0
3x=-2
x=-3/2 ==> S={-3/2}

b) -7x-5=0
-7x=5
x=-5/7 ==> S={-5/7}

c)18x=0
x=0 ==> S={0}

d) (1/2)x-7=0
(1/2)x=7
x=2*7 = 14 ==> S={14}

[tex]e)\ -\dfrac{3}{7}x+\dfrac{4}{5}=0\\\\-\dfrac{3}{7}x=-\dfrac{4}{5}\\\\x=(-\dfrac{4}{5})\times(-\dfrac{7}{3})\\\\x=\dfrac{28}{15}\Longrightarrow S=\{\dfrac{28}{15}\}[/tex]


f)3(x-2) – 7(x+1) = 0
3x-6-7x-7=0
3x-7x=6+7
-4x=13
x=-13/4 ==> S={-13/4}

g) (x+1)² - 4x = (x-1)²
x²+2x+1-4x = x² - 2x + 1
x² - x² +2x -4x + 2x = 1 – 1
0x = 0 x peut être égal à n’importe quel réel ===> S = R

[tex]h)\ \dfrac{3}{5}(1-2x)- \dfrac{1}{5}(2+9x)= \dfrac{1}{5}-3x\\\\\dfrac{3}{5}-\dfrac{6}{5}x-\dfrac{2}{5}-\dfrac{9}{5}x=\dfrac{1}{5}-3x\\\\-\dfrac{6}{5}x-\dfrac{9}{5}x+3x=\dfrac{1}{5}-\dfrac{3}{5}+\dfrac{2}{5}\\\\0x=0\\\\\Longrightarrow S=R[/tex]
 

Exercice 2  

1°) f(0) = 0^3 + (3/2)*0²-6*0 = 0 ===> f(0)=0
f(2) = 2^3 + (3/2)*4-6*2 = 8 + 6 – 12=2 ===> f(2)=2
f(-1/2) = (-1/2)^3 + (3/2)*(-1/2)² - 6*(-1/2) = -1/8 +(3/2)*(1/4) + 3
= -1/8 + 3/8 + 3 = 2/8 + 3 = ¼ + 12/4 = 13/4 ===> f(-1/2)=13/4

2°) x   -3   -2,5      -2    -1,5   -1      -0,5   0     0,5   1         1,5     2    2,5       3

f(x)    4,5   8,75   10      9     6,5   3,25    0   -2,5   -3,5   -2,25    2   10    22,5

3) a)
[tex]\begin{array}{|c|ccccccc|}x&-3&&-2&&1&&3 \\ f(x)&4,5&\nearrow&10&\searrow &-3,5&\nearrow &22,5\\\end{array}[/tex]
b) Le maximum de f sur [-3 ;3] est égal à 22,5. Il est atteint pour x = 3
Le minimum de f sur [-3 ;3] est égal à -3,5. Il est atteint pour x = 1.
c) Le maximum de f sur [-3 ;1] est égal à 10. Il est atteint pour x = -2
Le minimum de f sur [-3 ;-2] est égal à 4,5. Il est atteint pour x = -3.
d) Si x € [-3 ;-2], alors 4,5 ≤ f(x) ≤ 10.
e) Si x € [-2 ;1], alors -3,5 ≤ f(x) ≤ 10.
f) Si x € [-3 ;3], alors -3,5 ≤ f(x) ≤ 22,5.
4°) Graphique en pièce jointe
5°) a) L’équation f(x) = 0 admet deux solutions. La solution entière est x = 0.
b) [tex]\alpha\approx 1,812[/tex]
c) f(x) ≥ 0 si x € [-3  ; 0]
f(x) < 0 si x € ]0  ; 1,812[
f(x) ≥ 0 si x € [1,812 ; 3]
6°) a) g est une fonction affine. Sa représentation graphique est une droite.
b) g(-3) = (-1/2)*(-3)+3 = 3/2 + 3 = 3/2 + 6/2 = 9/2 = 4,5. Vu que g(-3) = 4,5, le point A(-3 ; 4,5) appartient bien à la courbe représentative de la fonction g.  
g(2) = (-1/2)*2+3 = -1 + 3 = 2.
Vu que g(2) = 2, le point B(2 ; 2) appartient bien à la courbe représentative de la fonction g.
c) f(-1/2) = 13/4 = 3,25 (voir tableau de la question 2)
g(-1/2) = (-1/2)*(-1/2) + 3 = 1/4 + 3 = 1/4 + 12/1 = 13/4
Par conséquent le point C(-1/2 : 13/4) appartient à Cf et à (D).
d) Si x € [-3 ; -1/2[, alors Cf est au-dessus de (D)
Si x € ]-1/2 ;2[, alors Cf est en-dessous de (D)
Si x € ]2 ;3], alors Cf est au-dessus de (D)          
View image Аноним
Merci d'être un membre actif de notre communauté. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons atteindre de nouveaux sommets de connaissances. Pour des réponses rapides et fiables, pensez à Zoofast.fr. Merci de votre visite et à bientôt.