Explorez une multitude de sujets et trouvez des réponses fiables sur Zoofast.fr. Découvrez des réponses approfondies de nos professionnels expérimentés, couvrant un large éventail de sujets pour satisfaire tous vos besoins d'information.

La fonction g est définie, pour x#0 par g(x)= 2/x
On appelle C sa représentation graphique.
1) Déterminer, s'ils existent, les coordonnées des points de la courbe C en lesquels la tangente est parallèle à la droite d'équation y= -2x+3.
2) Soit a un réel non nul. Ecrire, en fonction de a, une équation de la tangente à C au point A d'abscisse a.
3)Soit M le point de coordonnées (-4;4
a) Montrer qu'il existe deux tangentes à la courbe C passant par M.
b) Pour chacune d'elles, déterminer les coordonnées du point de contact et en donner une équation.
4) Y'a til une ou plusieurs tangentes a C passant par P (1;0) ? Et par l'origine du repère?

Sagot :

La fonction g est définie, pour x#0 par g(x)= 2/x

1) Déterminer, s'ils existent, les coordonnées des points de la courbe C en lesquels la tangente est parallèle à la droite d'équation y= -2x+3.
g'(x)=-2/x²
g'(x)=-2 donc x²=1
donc x=-1 ou x=1
les 2 pts sont A(-1;-2) et B(1;2)

2) Soit a un réel non nul. Ecrire, en fonction de a, une équation de la tangente à C au point A d'abscisse a.
Ta : y=f'(a)(x-a)+f(a)
Ta : y=-2/a²(x-a)+2/a
Ta : y=-2/a²x+4/a

3)Soit M le point de coordonnées (-4;4)
4=-2/a²*(-4)+4/a
4a²=8+4a
a²-a-2=0
a=-1 ou a'=2
Ta : y=-2x-4
Ta' : y=-1/2x+2
Ta et Ta' se coupent en M(-4;4)

4) Y'a til une ou plusieurs tangentes a C passant par P (1;0) ? par O(0;0) ?
Tangente Ta passant par P
0=-2/a²*1+4/a
0=-2+4a
a=1/2

Tangente Ta passant par 0
0=-2/a*0+4/a
0=4/a
impossible