Zoofast.fr: où vos questions rencontrent des réponses expertes. Trouvez les réponses dont vous avez besoin rapidement et précisément avec l'aide de nos membres de la communauté bien informés et dévoués.
Sagot :
Pour (x²+x-6)(x+1)<0 :
x²+x-6
début en : (x+1/2)² = x² + x + 1/4
x²+x-6 = (x+1/2)² - 1/4 - 6
= (x+1/2)² - 1/4 - 24/4
= (x+1/2)² - 25/4
= (x+1/2)² - (5/2)²
= (x+1/2-5/2)(x+1/2+5/2)
= (x-2)(x+3)
(x²+x-6)(x+1)<0
devient donc :
(x-2)(x+3)(x+1) < 0
risque = 0 pour :
x = 2 ou x = -3 ou x = -1
puis tableau de variation :
x: -oo -3 -1 2 +oo
(x-2) - - - - -| +
(x+3) - | + + + + +
(x+1) - - - | + + +
f(x) + | - | + | -
pas forcément très lisible :(
f(x) < 0 pour x appartenant à l'ensemble ]-oo;-3[ U ]-1;2[
et pour (2-x)(x²+3x-4)<0 :
x²+3x-4
début en: (x+3/2)² = x² + 3x + 9/4
x²+3x-4
= (x+3/2)² - 9/4 - 4
= (x+3/2)² - 9/4 - 16/4
= (x+3/2)² - 25/4
= (x+3/2)² - (5/2)²
= (x+3/2-5/2)(x+3/2+5/2)
= (x-1)(x+4)
(2-x)(x²+3x-4)<0
devient donc :
(2-x)(x-1)(x+4) < 0
risque = 0 pour :
x = 2 ou x = 1 ou x = -4
puis tableau de variation :
x: -oo -4 1 2 +oo
(2-x) + + + + + | -
(x-1) - - - | + + +
(x+4) - | + + + + +
f(x) + | - | + | -
pas forcément très lisible (à vérifier quand même par rapport à ton cours)
f(x) < 0 pour x appartenant à l'ensemble ]-4;1[ U ]2;+oo[
En espérant t'avoir aidé.
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Pour des réponses claires et rapides, choisissez Zoofast.fr. Merci et revenez souvent pour des mises à jour.