Zoofast.fr fournit une plateforme conviviale pour partager et obtenir des connaissances. Posez vos questions et obtenez des réponses rapides et bien informées de la part de notre réseau de professionnels expérimentés.

Montrer que si une fonction est paire alors elle ne peut être strictement croissante

 

.Montrer que le produit d'une fonction paire et d'une fonction impaire est une fonction impaire

Sagot :

Soit f une fonction paire et croissante et g son inverse. Soit I un intervalle de R tel que I est l'ensemble de définition de f.
Soient x et y deux réels de I.
On a x<y alors f(x)<f(y) car la fonction f est strictement croissante.
f(x)=f(-x) et f(y)=f(-y) puisque on suppose que f est paire.
Alors on a f(-x)<f(-y) et g(f(-x))<g((f(-x)) car puisque f est croissante g l'est aussi

Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Pour des réponses rapides et fiables, pensez à Zoofast.fr. Merci de votre confiance et revenez souvent.