Bonjour.
Une cheminée est représentée par le rectangle ABCD dont les cotés [AB] et [DC] mesurent 2m et 1m. l'intérieur de la cheminée est représenté par le rectangle EFGH. La partie entre les 2 rectangles, appelée bandeau, a partout la même largeur. Pour que le père Noel, assez corpulent, puisse facilement passer, l'aire du rectangle EFGH doit être supérieure à 0.5m².
On se pose le problème suivant : Quelle doit être la largeur maximale du bandeau pour qu'il en soit ainsi ?
1) On apelle x la largeur du bandeau. montrer que répondre au problème revient à résoudre l'inéquation 2x²-4x+1.5>(ou égale) 0
Voila je galère a cette question on commence les fonction carré et problèmes du second degré en cours donc je ne comprend pas trop comment faire je pense l'inéquation (2-2x)(1-2x)>0 Merci...
Une cheminée est représentée par le rectangle ABCD dont les cotés [AB] et [DC] mesurent 2m et 1m. l'intérieur de la cheminée est représenté par le rectangle EFGH. La partie entre les 2 rectangles, appelée bandeau, a partout la même largeur. Pour que le père Noel, assez corpulent, puisse facilement passer, l'aire du rectangle EFGH doit être supérieure à 0.5m².
On se pose le problème suivant : Quelle doit être la largeur maximale du bandeau pour qu'il en soit ainsi ?
1) On apelle x la largeur du bandeau. montrer que répondre au problème revient à résoudre l'inéquation 2x²-4x+1.5>(ou égale) 0
Voila je galère a cette question on commence les fonction carré et problèmes du second degré en cours donc je ne comprend pas trop comment faire je pense l'inéquation (2-2x)(1-2x)>0 Merci...