Bienvenue sur Zoofast.fr, votre plateforme de référence pour toutes vos questions! Posez vos questions et obtenez des réponses détaillées et fiables de notre communauté d'experts expérimentés.

Soit un carré ABCD de coté c inscrit dans un cercle C de centre O

Sachant que c=1+racine de 2 diviser par 2,calculer la valeur exacte

Du périmètre du carré ABCD

De l'aire de carré ABCD

du rayon r du cercle C

Du rayon r' du cercle C' de centre O et inscrit dans le carré ABCD

Du rapport des deux rayons r diviser par r'

les cinq résultats demandés seront donnés sous la forme a+b racine de 2 ou a et b sont deux nombres a déterminer

Pouvez vous m'aider s'il vous plait?

Sagot :

Un carré ABCD de coté c inscrit dans un cercle C au centre de O. 

c = (1 + √2) / 2 

Cela signifie que le carré est à l'intérieur du cercle C. 
Les 2 diagonales (AC) et (BD) du carré ABCD, ont la même longueur. 
Cette longueur représente le diamètre du cercle C. 

Faites-vous un petit dessin. 
C'est facile, un carré et un cercle qui passe par les 4 coins du carré. 


1. Du périmètre du carré ABCD 

Le périmètre, c'est la somme des 4 cotés du carré. 

Ces 4 cotés c sont égaux. 

P = 4 * c 

P = 4 * (1 + √2) / 2 

P = 2 * (1 + √2) 

P = 2 + 2√2 ≈ 4,828 


2. Aire du carré ABCD 

L'aire du carré, c'est la multiplication de 2 cotés. 

Ces 2 cotés sont égaux et correspondent à c. 

A = c * c = c² 

A = [(1 + √2) / 2]² 

A = [1 + 2√2 + (√2)²] / 4 

A = (1 + 2√2 + 2) / 4 

A = (3 + 2√2) / 4 

A = 3/4 + (√2)/2 ≈ 1,457 


3. Rayon du cercle C 

Vous avez un triangle ABD qui est rectangle en A. 

D'après Pythagore, vous avez : DB² = DA² + AB² 

DA = AB = c 

DB² = DA² + AB² = c² + c² = 2.c² 

Or DB représente le diamètre du cercle, alors : DB = 2R, donc : 

(2R)² = DB² 

4R² = DB² 

4R² = 2.c² 

R² = 2.c² / 4 

R² = c² / 2 

R = c / √2 

R = [(1 + √2) / 2] / √2 

R = (1/2.√2) + (1/2) 

R = (√2)/4 + (1/2) 

R = (√2 + 2) / 4 ≈ 0,853
Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Chaque réponse que vous cherchez se trouve sur Zoofast.fr. Merci de votre visite et à très bientôt.