Zoofast.fr offre une solution complète pour toutes vos questions. Trouvez des réponses détaillées et précises de la part de notre communauté d'experts dévoués.
Sagot :
Bonsoir,
1. (a) Chaque jour, l'équipe traite 1/5 du courrier en retard de la veille. Il reste alors 4/5 de ce courrier auquel on ajoute 200 lettres.
Donc Un+1 = (4/5)Un +200
U1 = 2200 ; U2 = 1960 ; U3 = 1768.
(b) V0 = 2500 - 1000 = 1500 ;
V1 = 2200 - 1000 = 1200 ;
V2 = 1960 - 100 = 960 ;
V3 = 1768 - 1000 = 768
[tex]V_{n+1} = U_{n+1} - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_{n} + 200 - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_n - 800\\\\V_{n+1} = \dfrac{4}{5}U_n - \dfrac{4}{5}\times1000\\\\V_{n+1} = \dfrac{4}{5}(U_n - 1000) [/tex]
(c) [tex]V_{n+1} = \dfrac{4}{5}(U_n - 1000)[/tex]
[tex]V_{n+1} = \dfrac{4}{5}V_n[/tex]
(Vn) est une suite géométrique de raison 4/5 et de premier terme V0 = 1500.
(d) [tex]V_n=V_0\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=1500\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=U_n-1000\Longrightarrow U_n=Vn+1000\\\\U_n=1500(\dfrac{4}{5})^n+1000[/tex]
(e) On sait que [tex]\lim_{n\to+\infty}(\dfrac{4}{5})^n=0\ \ \ car\ \ 0<\dfrac{4}{5}<1[/tex]
Donc [tex]\lim_{n\to+\infty}U_n=\lim_{n\to+\infty}\ \ [1500(\dfrac{4}{5})^n+1000]=0+1000=1000[/tex]
Il restera toujours impossible d'éliminer 1000 lettres à très long terme.
2. Si chaque jour, une personne supplémentaire permet de réduire le stock de 40 lettres, les nombres de lettres Wn du stock forment une suite arithmétique (Wn) de raison -40 et de premier terme égal à W0 = 1000.
Wn = W0 + n * (-40)
Wn = 1000 - 40n
Si le stock est épuisé, alors W0 = 0
0 = 1000 - 40n
n = 1000/40 = 25.
Une personne supplémentaire seule prendrait 25 jours pour épuiser ce stock.
Comme le chef veut que ce stock soit épuisé en 5 jours, il devra engager 25/5 = 5 personnes supplémentaires.
1. (a) Chaque jour, l'équipe traite 1/5 du courrier en retard de la veille. Il reste alors 4/5 de ce courrier auquel on ajoute 200 lettres.
Donc Un+1 = (4/5)Un +200
U1 = 2200 ; U2 = 1960 ; U3 = 1768.
(b) V0 = 2500 - 1000 = 1500 ;
V1 = 2200 - 1000 = 1200 ;
V2 = 1960 - 100 = 960 ;
V3 = 1768 - 1000 = 768
[tex]V_{n+1} = U_{n+1} - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_{n} + 200 - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_n - 800\\\\V_{n+1} = \dfrac{4}{5}U_n - \dfrac{4}{5}\times1000\\\\V_{n+1} = \dfrac{4}{5}(U_n - 1000) [/tex]
(c) [tex]V_{n+1} = \dfrac{4}{5}(U_n - 1000)[/tex]
[tex]V_{n+1} = \dfrac{4}{5}V_n[/tex]
(Vn) est une suite géométrique de raison 4/5 et de premier terme V0 = 1500.
(d) [tex]V_n=V_0\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=1500\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=U_n-1000\Longrightarrow U_n=Vn+1000\\\\U_n=1500(\dfrac{4}{5})^n+1000[/tex]
(e) On sait que [tex]\lim_{n\to+\infty}(\dfrac{4}{5})^n=0\ \ \ car\ \ 0<\dfrac{4}{5}<1[/tex]
Donc [tex]\lim_{n\to+\infty}U_n=\lim_{n\to+\infty}\ \ [1500(\dfrac{4}{5})^n+1000]=0+1000=1000[/tex]
Il restera toujours impossible d'éliminer 1000 lettres à très long terme.
2. Si chaque jour, une personne supplémentaire permet de réduire le stock de 40 lettres, les nombres de lettres Wn du stock forment une suite arithmétique (Wn) de raison -40 et de premier terme égal à W0 = 1000.
Wn = W0 + n * (-40)
Wn = 1000 - 40n
Si le stock est épuisé, alors W0 = 0
0 = 1000 - 40n
n = 1000/40 = 25.
Une personne supplémentaire seule prendrait 25 jours pour épuiser ce stock.
Comme le chef veut que ce stock soit épuisé en 5 jours, il devra engager 25/5 = 5 personnes supplémentaires.
Merci de votre participation active. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Pour des réponses rapides et fiables, consultez Zoofast.fr. Nous sommes toujours là pour vous aider.