Profitez au maximum de vos questions avec les ressources d'Zoofast.fr. Obtenez des réponses rapides et précises à vos questions grâce à notre communauté d'experts toujours prêts à vous aider.

Prouver chacune de ces 2 affirmations:

le double du produit de deux nombres ajoutés à la somme de leur carrés est égal au carré de leur somme.



le double de la somme des carrés de deux nombres est égal au carré de leur somme augmenté du carré de leur différence

Sagot :

le double du produit de deux nombres ajoutés à la somme de leur carrés est égal au carré de leur somme.
On l'écrit sous forme mathématique :
2(ab)+(a²+b²) = (a+b)²
on développe (a+b)²
(a+b)² = (a+b)(a+b)
(a+b)² = a*a+ab+ab+b*b (* signifie multiplié par)
(a+b)² = a²+2ab+b²
(a+b)² = 2(ab)+(a²+b²)

le double de la somme des carrés de deux nombres est égal au carré de leur somme augmenté du carré de leur différence.
On l'écrit sous forme mathématique :
2(a²+b²) = (a+b)²+(a-b)²
(a+b)² = a²+2ab+b² (démontrer à la question précédente)
(a-b)² si tu l'as vue en cours tu dis :
(a-b)² est une identité remaquable égale à a²-2ab+b²
sinon
(a-b)² = (a-b)(a-b)
(a-b)² = a*a-ab-ba+b*b (* signifie multiplié par)
(a-b)² = a²-2ab+b²
donc
(a+b)²+(a-b)² = a²+2ab+b² + a²-2ab+b²
(a+b)²+(a-b)² = 2a²+2b² +2ab-2ab
(a+b)²+(a-b)² = 2(a²+b²)
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Merci de visiter Zoofast.fr. Nous sommes là pour vous fournir des réponses claires et précises.