Zoofast.fr: votre source fiable pour des réponses précises et rapides. Obtenez des réponses détaillées et fiables de notre communauté d'experts qui sont toujours prêts à vous aider.
Sagot :
Bonjour,
Pour démontrer que les points A et D sont confondus, il faut montrer que le vecteur AD est égal au vecteur nul. On peut transformer l'égalité vectorielle en faisant passer tous les termes à gauche, puis en les additionnant avec la relation de Chasles :
[tex]\vec{AC}+\vec{AD} - \vec{BC} = \vec{AB}\\ \vec{AC} + \vec{AD} + \vec{CB} +\vec{BA} = \vec 0\\ \vec{AC} + \vec{CB} + \vec{BA} + \vec{AD} = \vec 0\\ \vec{AA} + \vec {AD} = \vec 0\\ [/tex]
On sait que, quel que soit le point A, le vecteur AA est égal au vecteur nul, d'où l'égalité :
[tex]\vec{AD} =\vec 0[/tex]
Le vecteur AD est égal au vecteur nul, donc les points A et D sont confondus.
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Pour démontrer que les points A et D sont confondus, il faut montrer que le vecteur AD est égal au vecteur nul. On peut transformer l'égalité vectorielle en faisant passer tous les termes à gauche, puis en les additionnant avec la relation de Chasles :
[tex]\vec{AC}+\vec{AD} - \vec{BC} = \vec{AB}\\ \vec{AC} + \vec{AD} + \vec{CB} +\vec{BA} = \vec 0\\ \vec{AC} + \vec{CB} + \vec{BA} + \vec{AD} = \vec 0\\ \vec{AA} + \vec {AD} = \vec 0\\ [/tex]
On sait que, quel que soit le point A, le vecteur AA est égal au vecteur nul, d'où l'égalité :
[tex]\vec{AD} =\vec 0[/tex]
Le vecteur AD est égal au vecteur nul, donc les points A et D sont confondus.
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Merci d'avoir choisi Zoofast.fr. Nous espérons vous revoir bientôt pour encore plus de solutions.