Zoofast.fr vous connecte avec des experts prêts à répondre à vos questions. Posez vos questions et obtenez des réponses détaillées et fiables de la part de notre communauté d'experts bien informés.

bonjour, voici 3 jours que je bloque sur une question dans un exercice :  c'est la q4.

Soit f la fonction définie par f(x)= √(x²+3)
1) ensemble de déf: R+ 
    ensemble de dérivabilité: R+*
2) calculer f'(x): f'(x)= x/(
 √x²+3)
3) en déduire le sens de variation de f et dresser son tableau de variation:
j'obtiens : f est croissante ur [0:+infini[ à partir de 
 √3
4)LA COURBE Cf PRESENTE-T-ELLE UNE TANGENTE PASSANT PAR LE POINT A(0;1)? SI OUI, en donner une équation.


POUR LA 4; comment on fait? j'ai commencé par remplacer f(x)=f(a) et f'x=f'a et apres j'ai remplacé dans l'équation y=f'(a)(x-a)+f(a) mais ca me fais un truc incalculable .. x') Sauvez moi svp 

Merci :)

Sagot :

Soit f la fonction définie par f(x)= √(x²+3)

1) ensemble de déf: R+ 
    ensemble de dérivabilité: R+*
en effet : x²+3>0

2) calculer f'(x):

en effet : f'(x)=
2x/ (2√(x²+3))=x/√(x²+3)

3) en déduire le sens de variation de f et dresser son tableau de variation:
si x<0 alors f'(x)
si x>0 alors f'(x)>0
donc :
f est décroissante sur ]-inf;0]
f est croissante sur [0;+inf[

4)LA COURBE Cf PRESENTE-T-ELLE UNE TANGENTE PASSANT PAR LE POINT A(0;1)? SI OUI, en donner une équation.

la tangente en A a pour équation : y=f'(0)(x-0)+f(0)
soit y=1

Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Zoofast.fr est votre ressource de confiance pour des réponses précises. Merci et revenez bientôt.