Zoofast.fr vous aide à trouver des réponses précises à vos questions. Posez vos questions et obtenez des réponses rapides et bien informées de la part de notre réseau de professionnels expérimentés.

Dans le repère muni d'un repère orthonormé on considère la parabole P d'équation y=x² et le point A(1;0) L'objet d'étude de l'exercice est de déterminer le point M de la courbe P tel que la distance AM soit minimale 1) déterminer F(X) , variations de F'(X) en déduire f'(X) = 0 Je bloque je tombe sur une équation à deux inconnus ....

Sagot :

A(1,0) M(x,x²)

La distance AM s'exprime par [tex]F(x)=\sqrt{2x^{2}-2x+1}[/tex]

[tex]F'(x)=\frac{2x-1}{\sqrt{2x^{2}-2x+1}}[/tex]

F'(x) s'annule en x = 1/2 et est négative avant et positive après.

F(x) est donc minimale pour x = 1/2