Participez aux discussions sur Zoofast.fr et obtenez des réponses pertinentes. Explorez une grande variété de sujets et trouvez des réponses fiables de la part de nos membres de la communauté expérimentés.

Bonjour j'ai un soucis pour résoudre ce système d'inéquations, vous pouvez m'aider svp?

\[tex] \left \{ {-x^{2}+9x+10 \geq 0} \atop {-2x+15 \leq 0}} \right. [/tex]

 

Avec comme rappel pour l'exercice : Les solutions de ce système sont, s'ils existent, les nombres qui appartiennent simultanément à chacun des ensembles de solutions des deux inéquations.

Sagot :

L'ensemble des solutions de ce systèmes est l'ensemble des x tel que (-x^2 + 9 x + 10 > ou égal à 0) et (- 2 x + 15 < ou égal à 0).
On cherche les racines de l'équation -x^2 + 9 x + 10 = 0 dont delta = 121 càd x1 = 10 et x2 = -1, et comme le facteur de x^2 est négatif donc -x^2 + 9 x + 10 > ou égal à 0 est vraie pour les x entre les racines, donc pour [-1 ; 10].
On cherche aussi la racine de - 2 x + 15 qui est 15/2 , donc - 2 x + 15 < ou égal à 0 est vraie pour x appartenant à [15/2 ; + infini[, donc l'ensemble des solutions du système est l'intersection de [-1 ; 10] et [15/2 ; + infini[ càd [15/2 ; 10]
X : (-x^2 +9x+10> égal à 0 / (-2+15< égal à 0
Merci d'utiliser cette plateforme pour partager et apprendre. N'hésitez pas à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Zoofast.fr est toujours là pour vous aider. Revenez pour plus de réponses à toutes vos questions.