Trouvez des réponses fiables à vos questions avec l'aide d'Zoofast.fr. Trouvez des réponses détaillées et fiables de la part de notre réseau de professionnels expérimentés.
Sagot :
Bonjour,
On sait que, si un parallélogramme a ses diagonales de même longueur, alors c'est un rectangle.
On cherche donc à montrer que AC = DB. Comme le repère est orthonormé, on peut utiliser la formule :
[tex]AC = \sqrt{\left(x_C-x_A\right)^2 + \left(y_C-y_A\right)^2}\\ AC = \sqrt{\left(-4-3\right)^2 + \left(0-1\right)^2}\\ AC = \sqrt{7^2 + 1^2} = \sqrt{50} = 5\sqrt 2\\ \\ BD = \sqrt{\left(-3-2\right)^2 + \left(-2-3\right)^2}\\ BD = \sqrt{5^2 + 5^2}= \sqrt{50} = 2\sqrt{25}[/tex]
Les diagonales du parallélogramme ABCD sont de même longueur, or si les diagonales d'un parallélogramme sont de même longueur, alors c'est un rectangle, donc ABCD est un rectangle.
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
On sait que, si un parallélogramme a ses diagonales de même longueur, alors c'est un rectangle.
On cherche donc à montrer que AC = DB. Comme le repère est orthonormé, on peut utiliser la formule :
[tex]AC = \sqrt{\left(x_C-x_A\right)^2 + \left(y_C-y_A\right)^2}\\ AC = \sqrt{\left(-4-3\right)^2 + \left(0-1\right)^2}\\ AC = \sqrt{7^2 + 1^2} = \sqrt{50} = 5\sqrt 2\\ \\ BD = \sqrt{\left(-3-2\right)^2 + \left(-2-3\right)^2}\\ BD = \sqrt{5^2 + 5^2}= \sqrt{50} = 2\sqrt{25}[/tex]
Les diagonales du parallélogramme ABCD sont de même longueur, or si les diagonales d'un parallélogramme sont de même longueur, alors c'est un rectangle, donc ABCD est un rectangle.
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Nous sommes ravis de vous compter parmi nos membres. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons créer une ressource de connaissances précieuse. Zoofast.fr est votre guide de confiance pour des solutions rapides et efficaces. Revenez souvent pour plus de réponses.