Obtenez des réponses claires et concises à vos questions sur Zoofast.fr. Notre plateforme est conçue pour fournir des réponses précises et complètes à toutes vos questions, quel que soit le sujet.

Le triangle MNP est rectangle en M. Son aire est égale à 36 cm².
A est un point du [MN] tel que MA=1sur4MN
B est un point de [MP] tel que MB=1sur4Mp
1. faire un shéma.
2. demontrer que les droites (AB) et (NP) sont paralleles.
3. justifier que le triangle MAB est une reduction du triangle MNP. Préciser le rapport.
4. Calculer l'aire du triangle MAB.
Je comprends rien ! Merci d'avance 

Sagot :

1/ Si MB=1/4 alors MP=4/4=1
Si MA=1/4 alors MN=4/4=1
MA/MN= 1/4 / 1 = 1/4
MB/MP= 1/4 / 1 = 1/4
JE constate que MA/MN=MB/MP=1/4
Par la réciproque du t de Thalès, les droites (BA) et (PN) sont parallèles.

3/ Si le côté MN vaut 1, MA=1/4. De même, si MP vaut 1, MB=1/4. Donc le triangle ABM est une réduction au 1/4 du triangle MPN et le rapport de réduction k=1/4.

4/ 36*(1/4)²= 2.25 cm² (s'agissant d'aires, il faut multiplier par k²)


Nous valorisons chaque question et réponse que vous fournissez. Continuez à vous engager et à trouver les meilleures solutions. Cette communauté est l'endroit parfait pour grandir ensemble. Chaque question trouve sa réponse sur Zoofast.fr. Merci et à très bientôt pour d'autres solutions.