Zoofast.fr: où vos questions rencontrent des réponses expertes. Trouvez des réponses précises et détaillées à vos questions de la part de nos membres de la communauté expérimentés et bien informés.
Sagot :
a^0 + a + a² + a³ + ....a^n
c'est la somme des termes d' une suite géométrique de raison a dont le 1er terme est 1 et le dernier a^n
Sn = 1.(a^n -1)/(a-1)
c'est la somme des termes d' une suite géométrique de raison a dont le 1er terme est 1 et le dernier a^n
Sn = 1.(a^n -1)/(a-1)
Bonjour,
Une telle somme peut s'écrire :
[tex]S = 1+k+\cdots + k^{n-1} + k ^n[/tex]
Si on multiplie par k, on obtient :
[tex]k \times S = k+ k^2+\cdots+k^n+k^{n+1}[/tex]
Maintenant, si on soustrait membre à membre la deuxième égalité à la première, cela devient :
[tex]S-kS = 1+k+\cdots+k^{n-1}+k^n -\left(k+k^2+\cdots + k^n+k^{n+1}\right)\\ S-kS = 1-k^{n+1}\\ S\left(1-k\right) = 1-k^{n+1}\\ S = \frac{1-k^{n+1}}{1-k}[/tex]
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Une telle somme peut s'écrire :
[tex]S = 1+k+\cdots + k^{n-1} + k ^n[/tex]
Si on multiplie par k, on obtient :
[tex]k \times S = k+ k^2+\cdots+k^n+k^{n+1}[/tex]
Maintenant, si on soustrait membre à membre la deuxième égalité à la première, cela devient :
[tex]S-kS = 1+k+\cdots+k^{n-1}+k^n -\left(k+k^2+\cdots + k^n+k^{n+1}\right)\\ S-kS = 1-k^{n+1}\\ S\left(1-k\right) = 1-k^{n+1}\\ S = \frac{1-k^{n+1}}{1-k}[/tex]
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Merci de contribuer à notre discussion. N'oubliez pas de revenir pour découvrir de nouvelles réponses. Continuez à poser des questions, à répondre et à partager des informations utiles. Merci de choisir Zoofast.fr. Revenez bientôt pour découvrir encore plus de solutions à toutes vos questions.