Profitez au maximum de vos questions avec les ressources d'Zoofast.fr. Posez vos questions et obtenez des réponses détaillées et fiables de la part de notre communauté d'experts expérimentés.

Bonjour à tous,  C'EST URGENT UN DM POUR DEMAIN
Je travail sur un exercice de


niveau Terminal sur les suites (en générale) et sur le principe de


raisonnent par récurrence, mais n'ayant pas eu de cours sur les suites


l'année derniere je bloque un peu dans cette partie du programme.


Voila mon exercice : On considère la suite (Un) définie sur N par :
Uo = 0 et Un+1 = 2/5Un +3
Démontrer que, pour tout entier naturel n : 
Un = 
5 (1-(2/5)^n)

Sagot :

Ok, je te laisse vérifier pour u0.
On suppose que Un= 5 (1-(2/5)^n)
et on veut montrer qu'alors Un+1= 5 (1-(2/5)^n+1)
D'après la définition de cette suite Un+1 = 2/5Un +3
On remplace Un, et ça donne:
Un+1= 2/5*(
5 (1-(2/5)^n) +3
= 5(2/5 - (2/5)^n+1) +3
= 2- 5* (2/5)^n+1) +3
=5-5* (2/5)^n+1
= 5 (1-(2/5)^n+1)
C'est ce qu'on voulait démontrer. Donc l'hérédité est prouvé, donc la propriété est vrai( si tu l'as vérifiée pour u0 et u1
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Chaque question trouve une réponse sur Zoofast.fr. Merci et à très bientôt pour d'autres solutions.