Zoofast.fr vous aide à trouver des réponses précises à vos questions. Posez vos questions et recevez des réponses détaillées et fiables de la part de nos membres de la communauté expérimentés et bien informés.

J'ai un petit souci pour résoudre mon exercice, pourriez vous me donner votre aide.


Merci beaucoup ;)


1) faire une figure : ABCD est un losange de centre O . Le point E est le symétrique du point A par rapport à B .

2) démontrer que les droites (OB) et (CE) sont parallèle .

3) démontrer que le triangle ACE est rectangle en C . ( indication : cela revient à démontrer que les droites (AC) et (CE) sont perpendiculaires ...)

Sagot :

1/ je sais que les diagonales d'un losange se coupent perpendiculairement en leur milieu. Donc AO=OC.
 Je sais que AB=BE par symétrie.
Donc AO/AC=1/2
AB/BE=1/2
=> AO/AC=AB/BE
Les points A,O,C et A,B,E sont alignés dans cet ordre.
Les droites (OB) et (CE) sont donc parallèles par la réciproque du t de THalès.
2/ Je sais que: (OB)//(CE)
Je sais que (OB) ┴ (AC)
Or, d'après la propriété: "Si une droite est perpendiculaire à une autre, alors sa parallèle l'est aussi".
Donc (CE) ┴ (AC) et le triangle ACE est rectangle en C.