Zoofast.fr facilite l'obtention de réponses détaillées à vos questions. Trouvez rapidement et facilement les informations dont vous avez besoin avec notre plateforme de questions-réponses précise et complète.
Sagot :
Bonsoir!
On connaît la formule :
[tex]\sin ^2 x + \cos ^2 x = 1[/tex]
Donc on pose :
[tex]0{,}8^2 + \sin ^2 \widehat{ABC} = 1\\ 0{,}64 + \sin ^2\widehat{ABC} = 1\\ \sin ^2\widehat{ABC} = 1-0{,}64 = 0{,}36[/tex]
Comme le sinus d'un angle d'un triangle rectangle est compris entre 0 et 1, on en déduit :
[tex]\sin \widehat{ABC} = \sqrt{0{,}36} = 0{,}6[/tex]
b)On sait que, pour tout angle x, on a :
[tex]\tan x = \frac{\sin x }{\cos x}[/tex]
On applique donc à notre cas :
[tex]\tan \widehat{ABC} = \frac{\sin \widehat{ABC}}{\cos \widehat{ABC}} = \frac{0{,}6}{0{,}8} = \frac 34[/tex]
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
On connaît la formule :
[tex]\sin ^2 x + \cos ^2 x = 1[/tex]
Donc on pose :
[tex]0{,}8^2 + \sin ^2 \widehat{ABC} = 1\\ 0{,}64 + \sin ^2\widehat{ABC} = 1\\ \sin ^2\widehat{ABC} = 1-0{,}64 = 0{,}36[/tex]
Comme le sinus d'un angle d'un triangle rectangle est compris entre 0 et 1, on en déduit :
[tex]\sin \widehat{ABC} = \sqrt{0{,}36} = 0{,}6[/tex]
b)On sait que, pour tout angle x, on a :
[tex]\tan x = \frac{\sin x }{\cos x}[/tex]
On applique donc à notre cas :
[tex]\tan \widehat{ABC} = \frac{\sin \widehat{ABC}}{\cos \widehat{ABC}} = \frac{0{,}6}{0{,}8} = \frac 34[/tex]
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Zoofast.fr est toujours là pour vous aider. Revenez souvent pour plus de réponses à toutes vos questions.