Obtenez des conseils avisés et des réponses précises sur Zoofast.fr. Trouvez des solutions rapides et fiables à vos problèmes grâce à notre réseau de professionnels expérimentés.
Sagot :
a) 16 − (2x − 1)² < 0
4² − (2x − 1)² < 0
(4 + 2x − 1) (4 − 2x + 1) < 0
(2x + 3) (−2x + 5) < 0
Si les deux facteurs sont de signe opposé.
Or 2x + 3 > 0 pour x > −3/2
−2x + 5 > 0 pour x < 5/2
Donc pour [tex]x \in \mathbb{R} - \{- \frac{3}{2} ; \frac{5}{2} \}[/tex]
b) (2x − 1) (x + 5) < 3x + 15
2x² + 10x − x − 5 − 3x − 15 < 0
2x² + 6x − 20 < 0
Le discriminant est égal à 6² − 4(2)(−20) = 196 = 14²
donc l'équation admet 2 solutions réelles (-6 + 14) / 4 = 2
et (-6 − 14) / 4 = -5.
Comme a = 2 et est positif, l'équation est négative entre ses racines, soit pour :
[tex]x \in \{ -5 ; 2 \}[/tex]
c) (x − 7)² < (2x − 1)²
(x − 7)² − (2x − 1)² < 0
(x − 7 + 2x − 1) (x − 7 − 2x + 1) < 0
(3x − 8) (−x − 6) < 0
Si les deux facteurs sont de signe opposé.
Or 3x − 8 > 0 pour x > 8/3
−x − 6 > 0 pour x < −6
Donc pour [tex]x \in \mathbb{R} - \{ -6 ; \frac{8}{3} \}[/tex]
4² − (2x − 1)² < 0
(4 + 2x − 1) (4 − 2x + 1) < 0
(2x + 3) (−2x + 5) < 0
Si les deux facteurs sont de signe opposé.
Or 2x + 3 > 0 pour x > −3/2
−2x + 5 > 0 pour x < 5/2
Donc pour [tex]x \in \mathbb{R} - \{- \frac{3}{2} ; \frac{5}{2} \}[/tex]
b) (2x − 1) (x + 5) < 3x + 15
2x² + 10x − x − 5 − 3x − 15 < 0
2x² + 6x − 20 < 0
Le discriminant est égal à 6² − 4(2)(−20) = 196 = 14²
donc l'équation admet 2 solutions réelles (-6 + 14) / 4 = 2
et (-6 − 14) / 4 = -5.
Comme a = 2 et est positif, l'équation est négative entre ses racines, soit pour :
[tex]x \in \{ -5 ; 2 \}[/tex]
c) (x − 7)² < (2x − 1)²
(x − 7)² − (2x − 1)² < 0
(x − 7 + 2x − 1) (x − 7 − 2x + 1) < 0
(3x − 8) (−x − 6) < 0
Si les deux facteurs sont de signe opposé.
Or 3x − 8 > 0 pour x > 8/3
−x − 6 > 0 pour x < −6
Donc pour [tex]x \in \mathbb{R} - \{ -6 ; \frac{8}{3} \}[/tex]
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Zoofast.fr est votre source de réponses fiables et précises. Merci pour votre visite et à très bientôt.